Araştırma Makalesi
BibTex RIS Kaynak Göster

GRONWALL TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS

Yıl 2016, Cilt: 4 Sayı: 2, 217 - 222, 01.10.2016

Öz

In this paper, some new generalized Gronwall-type inequalities are investigated for conformable differential equations. The established results are extensions of some existing Gronwall-type inequalities in the literature.

Kaynakça

  • [1] T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics 279 (2015) 57{66.
  • [2] D. R. Anderson and D. J. Ulness, Results for conformable di erential equations, preprint, 2016.
  • [3] A. Atangana, D. Baleanu, and A. Alsaedi, New properties of conformable derivative, Open Math. 2015; 13: 889{898.
  • [4] R. Khalil, M. Al horani, A. Yousef, M. Sababheh, A new de nition of fractional derivative, Journal of Computational Apllied Mathematics, 264 (2014), 65-70.
  • [5] O.S. Iyiola and E.R.Nwaeze, Some new results on the new conformable fractional calculus with application using D'Alambert approach, Progr. Fract. Differ. Appl., 2(2), 115-122, 2016.
  • [6] M. Abu Hammad, R. Khalil, Conformable fractional heat differential equations, International Journal of Differential Equations and Applications 13( 3), 2014, 177-183.
  • [7] M. Abu Hammad, R. Khalil, Abel's formula and wronskian for conformable fractional differential equations, International Journal of Differential Equations and Applications 13( 3), 2014, 177-183.
  • [8] U. Katugampola, A new fractional derivative with classical properties, ArXiv:1410.6535v2.
  • [9] A. Zheng, Y. Feng and W. Wang, The Hyers-Ulam stability of the conformable fractional differential equation, Mathematica Aeterna, Vol. 5, 2015, no. 3, 485-492.
  • [10] A. A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier B.V., Amsterdam, Netherlands, 2006.
  • [11] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordonand Breach, Yverdon et alibi, 1993.
Yıl 2016, Cilt: 4 Sayı: 2, 217 - 222, 01.10.2016

Öz

Kaynakça

  • [1] T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics 279 (2015) 57{66.
  • [2] D. R. Anderson and D. J. Ulness, Results for conformable di erential equations, preprint, 2016.
  • [3] A. Atangana, D. Baleanu, and A. Alsaedi, New properties of conformable derivative, Open Math. 2015; 13: 889{898.
  • [4] R. Khalil, M. Al horani, A. Yousef, M. Sababheh, A new de nition of fractional derivative, Journal of Computational Apllied Mathematics, 264 (2014), 65-70.
  • [5] O.S. Iyiola and E.R.Nwaeze, Some new results on the new conformable fractional calculus with application using D'Alambert approach, Progr. Fract. Differ. Appl., 2(2), 115-122, 2016.
  • [6] M. Abu Hammad, R. Khalil, Conformable fractional heat differential equations, International Journal of Differential Equations and Applications 13( 3), 2014, 177-183.
  • [7] M. Abu Hammad, R. Khalil, Abel's formula and wronskian for conformable fractional differential equations, International Journal of Differential Equations and Applications 13( 3), 2014, 177-183.
  • [8] U. Katugampola, A new fractional derivative with classical properties, ArXiv:1410.6535v2.
  • [9] A. Zheng, Y. Feng and W. Wang, The Hyers-Ulam stability of the conformable fractional differential equation, Mathematica Aeterna, Vol. 5, 2015, no. 3, 485-492.
  • [10] A. A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier B.V., Amsterdam, Netherlands, 2006.
  • [11] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordonand Breach, Yverdon et alibi, 1993.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

MEHMET ZEKI Sarıkaya

Yayımlanma Tarihi 1 Ekim 2016
Gönderilme Tarihi 4 Haziran 2014
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 2

Kaynak Göster

APA Sarıkaya, M. Z. (2016). GRONWALL TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS. Konuralp Journal of Mathematics, 4(2), 217-222.
AMA Sarıkaya MZ. GRONWALL TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS. Konuralp J. Math. Ekim 2016;4(2):217-222.
Chicago Sarıkaya, MEHMET ZEKI. “GRONWALL TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS”. Konuralp Journal of Mathematics 4, sy. 2 (Ekim 2016): 217-22.
EndNote Sarıkaya MZ (01 Ekim 2016) GRONWALL TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS. Konuralp Journal of Mathematics 4 2 217–222.
IEEE M. Z. Sarıkaya, “GRONWALL TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS”, Konuralp J. Math., c. 4, sy. 2, ss. 217–222, 2016.
ISNAD Sarıkaya, MEHMET ZEKI. “GRONWALL TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS”. Konuralp Journal of Mathematics 4/2 (Ekim 2016), 217-222.
JAMA Sarıkaya MZ. GRONWALL TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS. Konuralp J. Math. 2016;4:217–222.
MLA Sarıkaya, MEHMET ZEKI. “GRONWALL TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS”. Konuralp Journal of Mathematics, c. 4, sy. 2, 2016, ss. 217-22.
Vancouver Sarıkaya MZ. GRONWALL TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL INTEGRALS. Konuralp J. Math. 2016;4(2):217-22.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.