Research Article
BibTex RIS Cite

HERMITE-HADAMARD AND HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR (k, h)-CONVEX FUNCTION VIA KATUGAMPOLA FRACTIONAL INTEGRALS

Year 2017, Volume: 5 Issue: 2, 181 - 191, 15.10.2017

Abstract

In this paper, we obtain some new Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for (k,h)-convex functions via Katugampola fractionals which are a generalization of Riemann-Liouville and the Hadamard fractional integrals in to a single form.

References

  • [1] W.W. Breckner, Stetigkeitsaussagenf ureine Klass ever all gemeinerter konvexer funktionen in topologisc henlianeren Raumen, Pupl. Inst. Math., 23 (1978), 13-20.
  • [2] H. Chen, U.N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274-1291.
  • [3] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (1) (2010), 51-58.
  • [4] S.S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the rst sense, Demonstratio Math, 31 (3) (1998), 633-642.
  • [5] S.S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstration Math, 32 (4) (1999), 687-696.
  • [6] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000 (Online:http:rgma.vu.edu.au/monographs)
  • [7] S.S. Dragomir, J. Pecaric , L.E. Person, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341.
  • [8] L. Fejer, Über die Fourierreihen, II, Math. Naturwiss. Anz.Ungar.Akad. Wiss., 24 (1906), 369-390.
  • [9] E.K. Godunova and V.I. Levin, Nerevenstra dlja funccii sirokogo klassa soderzassego vypuklye, monotonnye i nekotorye drugie vidy funkaii, Vycislitel Mat. i Mt. Fiz. Mezvuzov Sb. Nauc. Trudov. MPGI, Moscow, 1985, 138-142.
  • [10] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100-111.
  • [11] İ. İŞCan, Hermite-Hadamard-Fejer type inequalities for convex function via fractional integrals, Stud. Univ. Babeş-Bolyai Math., 60(2015), No.3, 355-366.
  • [12] U.N. Katugampola, New approach to a generalized fractional integrals, Appl. Math. Comput. 218 (4) (2011), 860-865.
  • [13] U.N. Katugampola, New approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (4) (2014), 1-15.
  • [14] U.N. Katugampola, Mellin transforms of generalized fractional integrals and derivatives, Appl. Math. Comput. 257 (2011), 566-580.
  • [15] G. Maksa, ZS. Pales, The equality case in some recent convexity inequlities, Opuscula Math. 31, 2 (2011), 269-277.
  • [16] J. Matkowski and T. Siwiatkowski, On Subadditive, Prosidings of The American Mathematical Society. 119 (1993), 187-197.
  • [17] B. Micharda and T. Rajba, On some Hermite-Hadamard-Fejer Inequalities for (k,h)-convex functions, Mathematical Inequalities and Applications 12, 4 (2012), 931-940.
  • [18] D.S. Mitrinovic and I.B. Lackovic, Hermite and convexity, Aequationes Math.28, 3 (1985), 229-232.
  • [19] W. Orlicz. A note on modular spaces. IX, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys. 16 (1968), 801-808. MR 39:3278
  • [20] M.E.  Ozdemir, E. Set, M. Alomari, Integral inequalities via several kinds of convexity, Creat. Math. Inform., 20(1) (2011), 62-73.
  • [21] M. E. Özdemir, Ç Yıldız, A. O. Akdemir, E. Set, On some inequalities for s-convex functions and applications, J. Ineq. Appl., 2013(1) (2013), 333.
  • [22] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam,1993
  • [23] M.Z. Sarıkaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math.Comput. Modelling, 57(9) (2013) 2403-2407
  • [24] E. Set, New inequalities of Ostrowski type for mapping whose derivatives are s-convex in the second sense via fractional integrals, Computers and Math. with Appl. 63 (2012), 1147-1154.
  • [25] E. Set, İ. İşcan, M.Z. Sarıkaya, M.E. Özdemir, On new inequalities of Hermite-Hadamard Fejer type for convex functions via fractional integrals, Appl. Math. Comput., 259 (2015), 875-881.
  • [26] E. Set, A. Karaoğlan, Hermite-Hadamard-Fejer type inequalities for (k-h)-convex function via Riemann-Liouville and conformable fractional integrals, AIP Conference Proceedings, 1883(020039) (2017), 1-5.
  • [27] E. Set, M.E.  Ozdemir, M.Z. Sarıkaya, Inequalities of Hermite-Hadamards type for functions whose derivatives absolute values are m-convex, AIP Conf. Proc., 1309(1) (2010), 861-863.
  • [28] E. Set, İ. İşcan, F. Zehir, On some new inequalities of Hermite-Hadamard type involving harmonically convex functions via fractional integrals, Konuralp J. Math., 3(1) (2015), 42-55.
  • [29] E. Set, M.Z. Sarıkaya, M.E. Özdemir, H. Yıldırım The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Statis. Inform., 10(2) (2014), 69-83.
  • [30] S. Varosanec. On h-convexity, J. Math. Anal. Appl., 326 (1) (2007), 303-311.
Year 2017, Volume: 5 Issue: 2, 181 - 191, 15.10.2017

Abstract

References

  • [1] W.W. Breckner, Stetigkeitsaussagenf ureine Klass ever all gemeinerter konvexer funktionen in topologisc henlianeren Raumen, Pupl. Inst. Math., 23 (1978), 13-20.
  • [2] H. Chen, U.N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274-1291.
  • [3] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (1) (2010), 51-58.
  • [4] S.S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the rst sense, Demonstratio Math, 31 (3) (1998), 633-642.
  • [5] S.S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstration Math, 32 (4) (1999), 687-696.
  • [6] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000 (Online:http:rgma.vu.edu.au/monographs)
  • [7] S.S. Dragomir, J. Pecaric , L.E. Person, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341.
  • [8] L. Fejer, Über die Fourierreihen, II, Math. Naturwiss. Anz.Ungar.Akad. Wiss., 24 (1906), 369-390.
  • [9] E.K. Godunova and V.I. Levin, Nerevenstra dlja funccii sirokogo klassa soderzassego vypuklye, monotonnye i nekotorye drugie vidy funkaii, Vycislitel Mat. i Mt. Fiz. Mezvuzov Sb. Nauc. Trudov. MPGI, Moscow, 1985, 138-142.
  • [10] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100-111.
  • [11] İ. İŞCan, Hermite-Hadamard-Fejer type inequalities for convex function via fractional integrals, Stud. Univ. Babeş-Bolyai Math., 60(2015), No.3, 355-366.
  • [12] U.N. Katugampola, New approach to a generalized fractional integrals, Appl. Math. Comput. 218 (4) (2011), 860-865.
  • [13] U.N. Katugampola, New approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (4) (2014), 1-15.
  • [14] U.N. Katugampola, Mellin transforms of generalized fractional integrals and derivatives, Appl. Math. Comput. 257 (2011), 566-580.
  • [15] G. Maksa, ZS. Pales, The equality case in some recent convexity inequlities, Opuscula Math. 31, 2 (2011), 269-277.
  • [16] J. Matkowski and T. Siwiatkowski, On Subadditive, Prosidings of The American Mathematical Society. 119 (1993), 187-197.
  • [17] B. Micharda and T. Rajba, On some Hermite-Hadamard-Fejer Inequalities for (k,h)-convex functions, Mathematical Inequalities and Applications 12, 4 (2012), 931-940.
  • [18] D.S. Mitrinovic and I.B. Lackovic, Hermite and convexity, Aequationes Math.28, 3 (1985), 229-232.
  • [19] W. Orlicz. A note on modular spaces. IX, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys. 16 (1968), 801-808. MR 39:3278
  • [20] M.E.  Ozdemir, E. Set, M. Alomari, Integral inequalities via several kinds of convexity, Creat. Math. Inform., 20(1) (2011), 62-73.
  • [21] M. E. Özdemir, Ç Yıldız, A. O. Akdemir, E. Set, On some inequalities for s-convex functions and applications, J. Ineq. Appl., 2013(1) (2013), 333.
  • [22] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam,1993
  • [23] M.Z. Sarıkaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math.Comput. Modelling, 57(9) (2013) 2403-2407
  • [24] E. Set, New inequalities of Ostrowski type for mapping whose derivatives are s-convex in the second sense via fractional integrals, Computers and Math. with Appl. 63 (2012), 1147-1154.
  • [25] E. Set, İ. İşcan, M.Z. Sarıkaya, M.E. Özdemir, On new inequalities of Hermite-Hadamard Fejer type for convex functions via fractional integrals, Appl. Math. Comput., 259 (2015), 875-881.
  • [26] E. Set, A. Karaoğlan, Hermite-Hadamard-Fejer type inequalities for (k-h)-convex function via Riemann-Liouville and conformable fractional integrals, AIP Conference Proceedings, 1883(020039) (2017), 1-5.
  • [27] E. Set, M.E.  Ozdemir, M.Z. Sarıkaya, Inequalities of Hermite-Hadamards type for functions whose derivatives absolute values are m-convex, AIP Conf. Proc., 1309(1) (2010), 861-863.
  • [28] E. Set, İ. İşcan, F. Zehir, On some new inequalities of Hermite-Hadamard type involving harmonically convex functions via fractional integrals, Konuralp J. Math., 3(1) (2015), 42-55.
  • [29] E. Set, M.Z. Sarıkaya, M.E. Özdemir, H. Yıldırım The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Statis. Inform., 10(2) (2014), 69-83.
  • [30] S. Varosanec. On h-convexity, J. Math. Anal. Appl., 326 (1) (2007), 303-311.
There are 30 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

ERHAN Set

ALİ Karaoğlan

Publication Date October 15, 2017
Submission Date June 6, 2017
Acceptance Date October 12, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Set, E., & Karaoğlan, A. (2017). HERMITE-HADAMARD AND HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR (k, h)-CONVEX FUNCTION VIA KATUGAMPOLA FRACTIONAL INTEGRALS. Konuralp Journal of Mathematics, 5(2), 181-191.
AMA Set E, Karaoğlan A. HERMITE-HADAMARD AND HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR (k, h)-CONVEX FUNCTION VIA KATUGAMPOLA FRACTIONAL INTEGRALS. Konuralp J. Math. October 2017;5(2):181-191.
Chicago Set, ERHAN, and ALİ Karaoğlan. “HERMITE-HADAMARD AND HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR (k, H)-CONVEX FUNCTION VIA KATUGAMPOLA FRACTIONAL INTEGRALS”. Konuralp Journal of Mathematics 5, no. 2 (October 2017): 181-91.
EndNote Set E, Karaoğlan A (October 1, 2017) HERMITE-HADAMARD AND HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR (k, h)-CONVEX FUNCTION VIA KATUGAMPOLA FRACTIONAL INTEGRALS. Konuralp Journal of Mathematics 5 2 181–191.
IEEE E. Set and A. Karaoğlan, “HERMITE-HADAMARD AND HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR (k, h)-CONVEX FUNCTION VIA KATUGAMPOLA FRACTIONAL INTEGRALS”, Konuralp J. Math., vol. 5, no. 2, pp. 181–191, 2017.
ISNAD Set, ERHAN - Karaoğlan, ALİ. “HERMITE-HADAMARD AND HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR (k, H)-CONVEX FUNCTION VIA KATUGAMPOLA FRACTIONAL INTEGRALS”. Konuralp Journal of Mathematics 5/2 (October 2017), 181-191.
JAMA Set E, Karaoğlan A. HERMITE-HADAMARD AND HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR (k, h)-CONVEX FUNCTION VIA KATUGAMPOLA FRACTIONAL INTEGRALS. Konuralp J. Math. 2017;5:181–191.
MLA Set, ERHAN and ALİ Karaoğlan. “HERMITE-HADAMARD AND HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR (k, H)-CONVEX FUNCTION VIA KATUGAMPOLA FRACTIONAL INTEGRALS”. Konuralp Journal of Mathematics, vol. 5, no. 2, 2017, pp. 181-9.
Vancouver Set E, Karaoğlan A. HERMITE-HADAMARD AND HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR (k, h)-CONVEX FUNCTION VIA KATUGAMPOLA FRACTIONAL INTEGRALS. Konuralp J. Math. 2017;5(2):181-9.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.