Research Article
BibTex RIS Cite

DERIVATIVES WITH RESPECT TO HORIZONTAL AND VERTICAL LIFTS OF THE CHEEGER-GROMOLL METRIC $^{CG}g$ ON THE $(1,1)-$TENSOR BUNDLE $T_{1}^{1}(M)$

Year 2017, Volume: 5 Issue: 2, 78 - 86, 15.10.2017

Abstract

In this paper, we define the Cheeger-Gromoll metric in the $(1,1)$ $-$tensor bundle $T_{1}^{1}(M)$, which is completely determined by its action on vector fields of type $X^{H}$ and $\omega ^{V}$. Later, we obtain the covarient and Lie derivatives applied to the Cheeger-Gromoll metric with respect to the horizontal and vertical lifts of vector and kovector fields, respectively.

References

  • [1] Akyol, M. A., Sarı, R. and Aksoy, E., Semi-invariant -Riemannian submersions from almost contact metric manifolds, Int. J. Geom. Methods Mod. Phys. 14, 175007 4 (2017) DOI:http://dx.doi.org/10.1142/S0219887817500748.
  • [2] Akyol, M. A., Conformal anti-invariant submersions from cosymplectic manifolds, Hacet. J. Math. Stat. 46(2017), no.2, 177-192.
  • [3] Çakmak, A. and Tarakç, Ö., Surfaces at a constant distance from the edge of regression on a surface of revolution in . Applied Mathematical Sciences, 10(2016), no.15, 707-719.
  • [4] Çakmak, A., Karacan, M.K., Kiziltug, S. and Yoon, D.W., Translation surfaces in the 3-dimensional Gallean space satisfying . Bull. Korean Math. Soc. https://doi.org/10.4134/BKMS.b160442.
  • [5] Çayır, H. and Akdağ, K., Some notes on almost paracomplex structures associated with the diagonal lifts and operators on cotangent bundle, New Trends in Mathematical Sciences, 4(2016), no.4, 42-50.
  • [6] Çayır, H. and Köseoğlu, G., Lie Derivatives of Almost Contact Structure and Almost Paracontact Structure With Respect to XC and XV on Tangent Bundle T(M), New Trends in Mathematical Sciences, 4(2016), no.1, 153-159.
  • [7] Cengiz, N. and Salimov, A. A., Complete lifts of derivations to tensor bundles, Bol. Soc. Mat. Mexicana (3) 8(2002), no.1, 75-82.
  • [8] Gancarzewicz, J. and Rahmani, N., Relevent horizontal des connexions linearies au bre vectoriel associe avec le bre principal des repres lineaires, Annales Polinici Math., 48(1988), 281-289.
  • [9] Gezer, A. and Altunbas, M., On the (1; 1)-tensor bundle with Cheeger-Grommol type metric, Proc. Indian Acad. Sci.(Math Sci.) 125(2015), no.4, 569-576.
  • [10] Gunduzalp, Y., Slant submersions from almost paracontact Riemannian manifolds, product Riemannian manifolds, Kuwait Journal of Science, 42(2015), no.1, 17-29.
  • [11] Gunduzalp, Y., Semi-slant submersions from almost product Riemannian manifolds, DEMONSTRATIO MATHEMATICA, 49(2016), no.4.
  • [12] Khan, M. N. I., and Jun, J.B., Lorentzian Almost r-para-contact Structure in Tangent Bundle, Journal of the Chungcheong Mathematical Society, 27(2014), no.1, 29-34.
  • [13] Kobayashi, S. and Nomizu, K., Foundations of Di erential Geometry-Volume I, John Wiley & Sons, Inc, New York, 1963.
  • [14] Lai, K. F. and Mok, K. P., On the differential geometry of the (1; 1)-tensor bundle, Tensor (New Series), 63(2002), no.1, 15-27.
  • [15] Ledger, A. J. and Yano, K., Almost complex structures on the tensor bundles, J. Diff. Geom., 1(1967), 355-368.
  • [16] Salimov, A.A., Tensor Operators and Their applications, Nova Science Publ., New York, 2013.
  • [17] Salimov, A. and Gezer, A., On the geometry of the (1,1) -tensor bundle with Sasaki type metric, Chin. Ann. Math. Ser. B 32(2011), no.3, 369-386.
  • [18] Yano, K. and Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973.
Year 2017, Volume: 5 Issue: 2, 78 - 86, 15.10.2017

Abstract

References

  • [1] Akyol, M. A., Sarı, R. and Aksoy, E., Semi-invariant -Riemannian submersions from almost contact metric manifolds, Int. J. Geom. Methods Mod. Phys. 14, 175007 4 (2017) DOI:http://dx.doi.org/10.1142/S0219887817500748.
  • [2] Akyol, M. A., Conformal anti-invariant submersions from cosymplectic manifolds, Hacet. J. Math. Stat. 46(2017), no.2, 177-192.
  • [3] Çakmak, A. and Tarakç, Ö., Surfaces at a constant distance from the edge of regression on a surface of revolution in . Applied Mathematical Sciences, 10(2016), no.15, 707-719.
  • [4] Çakmak, A., Karacan, M.K., Kiziltug, S. and Yoon, D.W., Translation surfaces in the 3-dimensional Gallean space satisfying . Bull. Korean Math. Soc. https://doi.org/10.4134/BKMS.b160442.
  • [5] Çayır, H. and Akdağ, K., Some notes on almost paracomplex structures associated with the diagonal lifts and operators on cotangent bundle, New Trends in Mathematical Sciences, 4(2016), no.4, 42-50.
  • [6] Çayır, H. and Köseoğlu, G., Lie Derivatives of Almost Contact Structure and Almost Paracontact Structure With Respect to XC and XV on Tangent Bundle T(M), New Trends in Mathematical Sciences, 4(2016), no.1, 153-159.
  • [7] Cengiz, N. and Salimov, A. A., Complete lifts of derivations to tensor bundles, Bol. Soc. Mat. Mexicana (3) 8(2002), no.1, 75-82.
  • [8] Gancarzewicz, J. and Rahmani, N., Relevent horizontal des connexions linearies au bre vectoriel associe avec le bre principal des repres lineaires, Annales Polinici Math., 48(1988), 281-289.
  • [9] Gezer, A. and Altunbas, M., On the (1; 1)-tensor bundle with Cheeger-Grommol type metric, Proc. Indian Acad. Sci.(Math Sci.) 125(2015), no.4, 569-576.
  • [10] Gunduzalp, Y., Slant submersions from almost paracontact Riemannian manifolds, product Riemannian manifolds, Kuwait Journal of Science, 42(2015), no.1, 17-29.
  • [11] Gunduzalp, Y., Semi-slant submersions from almost product Riemannian manifolds, DEMONSTRATIO MATHEMATICA, 49(2016), no.4.
  • [12] Khan, M. N. I., and Jun, J.B., Lorentzian Almost r-para-contact Structure in Tangent Bundle, Journal of the Chungcheong Mathematical Society, 27(2014), no.1, 29-34.
  • [13] Kobayashi, S. and Nomizu, K., Foundations of Di erential Geometry-Volume I, John Wiley & Sons, Inc, New York, 1963.
  • [14] Lai, K. F. and Mok, K. P., On the differential geometry of the (1; 1)-tensor bundle, Tensor (New Series), 63(2002), no.1, 15-27.
  • [15] Ledger, A. J. and Yano, K., Almost complex structures on the tensor bundles, J. Diff. Geom., 1(1967), 355-368.
  • [16] Salimov, A.A., Tensor Operators and Their applications, Nova Science Publ., New York, 2013.
  • [17] Salimov, A. and Gezer, A., On the geometry of the (1,1) -tensor bundle with Sasaki type metric, Chin. Ann. Math. Ser. B 32(2011), no.3, 369-386.
  • [18] Yano, K. and Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973.
There are 18 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

HAŞİM Çayır

MOHAMMAD NAZRUL ISLAM Khan This is me

Publication Date October 15, 2017
Submission Date October 13, 2017
Acceptance Date May 31, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Çayır, H., & Khan, M. N. I. (2017). DERIVATIVES WITH RESPECT TO HORIZONTAL AND VERTICAL LIFTS OF THE CHEEGER-GROMOLL METRIC $^{CG}g$ ON THE $(1,1)-$TENSOR BUNDLE $T_{1}^{1}(M)$. Konuralp Journal of Mathematics, 5(2), 78-86.
AMA Çayır H, Khan MNI. DERIVATIVES WITH RESPECT TO HORIZONTAL AND VERTICAL LIFTS OF THE CHEEGER-GROMOLL METRIC $^{CG}g$ ON THE $(1,1)-$TENSOR BUNDLE $T_{1}^{1}(M)$. Konuralp J. Math. October 2017;5(2):78-86.
Chicago Çayır, HAŞİM, and MOHAMMAD NAZRUL ISLAM Khan. “DERIVATIVES WITH RESPECT TO HORIZONTAL AND VERTICAL LIFTS OF THE CHEEGER-GROMOLL METRIC $^{CG}g$ ON THE $(1,1)-$TENSOR BUNDLE $T_{1}^{1}(M)$”. Konuralp Journal of Mathematics 5, no. 2 (October 2017): 78-86.
EndNote Çayır H, Khan MNI (October 1, 2017) DERIVATIVES WITH RESPECT TO HORIZONTAL AND VERTICAL LIFTS OF THE CHEEGER-GROMOLL METRIC $^{CG}g$ ON THE $(1,1)-$TENSOR BUNDLE $T_{1}^{1}(M)$. Konuralp Journal of Mathematics 5 2 78–86.
IEEE H. Çayır and M. N. I. Khan, “DERIVATIVES WITH RESPECT TO HORIZONTAL AND VERTICAL LIFTS OF THE CHEEGER-GROMOLL METRIC $^{CG}g$ ON THE $(1,1)-$TENSOR BUNDLE $T_{1}^{1}(M)$”, Konuralp J. Math., vol. 5, no. 2, pp. 78–86, 2017.
ISNAD Çayır, HAŞİM - Khan, MOHAMMAD NAZRUL ISLAM. “DERIVATIVES WITH RESPECT TO HORIZONTAL AND VERTICAL LIFTS OF THE CHEEGER-GROMOLL METRIC $^{CG}g$ ON THE $(1,1)-$TENSOR BUNDLE $T_{1}^{1}(M)$”. Konuralp Journal of Mathematics 5/2 (October 2017), 78-86.
JAMA Çayır H, Khan MNI. DERIVATIVES WITH RESPECT TO HORIZONTAL AND VERTICAL LIFTS OF THE CHEEGER-GROMOLL METRIC $^{CG}g$ ON THE $(1,1)-$TENSOR BUNDLE $T_{1}^{1}(M)$. Konuralp J. Math. 2017;5:78–86.
MLA Çayır, HAŞİM and MOHAMMAD NAZRUL ISLAM Khan. “DERIVATIVES WITH RESPECT TO HORIZONTAL AND VERTICAL LIFTS OF THE CHEEGER-GROMOLL METRIC $^{CG}g$ ON THE $(1,1)-$TENSOR BUNDLE $T_{1}^{1}(M)$”. Konuralp Journal of Mathematics, vol. 5, no. 2, 2017, pp. 78-86.
Vancouver Çayır H, Khan MNI. DERIVATIVES WITH RESPECT TO HORIZONTAL AND VERTICAL LIFTS OF THE CHEEGER-GROMOLL METRIC $^{CG}g$ ON THE $(1,1)-$TENSOR BUNDLE $T_{1}^{1}(M)$. Konuralp J. Math. 2017;5(2):78-86.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.