Musical Isomorphisms on the Semi-Tensor Bundles
Year 2018,
Volume: 6 Issue: 1, 171 - 177, 15.04.2018
Semra Yurttançıkmaz
,
Furkan Yıldırım
Abstract
We transfer vertical lifts and complete lifts of some tensor fields from the semi-tangent bundle $tM$ to the semi-cotangent bundle $t^{\ast }M$ \ using a musical isomorphism between these bundles. In this article, we also analyze complete lift of vector and affinor (tensor of type $(1,1)$) fields for semi-tangent (pull-back) bundle $tM$. Finally, we study compatibility of transferring lifts with complete lifts in the semi-cotangent bundle $t^{\ast }M$.
References
- [1] A. A. Salimov, E. Kadioglu Lifts of derivations to the semitangent bundle. Turk J Math 2000; 24: 259-266.
- [2] D. Husem¨oller, Fibre Bundles. New York, NY, USA: Springer, 1994.
- [3] F. Yildirim, On a special class of semi-cotangent bundle, Proceedings of the Institute of Mathematics and Mechanics, (ANAS) 41 (2015), no. 1, 25-38.
- [4] F. Yildirim and A. Salimov, Semi-cotangent bundle and problems of lifts, Turk J. Math, (2014), 38, 325-339.
- [5] H.B. Lawson and M.L. Michelsohn, Spin Geometry, Princeton University Press., Princeton, 1989.
- [6] K. Yano and S. Ishihara, Tangent and Cotangent Bundles , Marcel Dekker, Inc., New York, 1973.
- [7] N. Steenrod, The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
- [8] R. Cakan, K. Akbulut, A. Salimov, Musical isomorphisms and problems of lifts, Chin. Ann. Math. Ser. B. (2016) 37: 323.
- [9] T.V. Duc, Structure presque-transverse. J. Diff. Geom., 14(1979), No:2, 215-219.
- [10] V. V. Vishnevskii, Integrable affinor structures and their plural interpretations, Geometry, 7.J. Math. Sci., (New York) 108 (2002), no. 2, 151-187.
- [11] V. Vishnevskii, A.P. Shirokov and V.V. Shurygin, Spaces over Algebras. Kazan. Kazan Gos. Univ. 1985 (in Russian).
Year 2018,
Volume: 6 Issue: 1, 171 - 177, 15.04.2018
Semra Yurttançıkmaz
,
Furkan Yıldırım
References
- [1] A. A. Salimov, E. Kadioglu Lifts of derivations to the semitangent bundle. Turk J Math 2000; 24: 259-266.
- [2] D. Husem¨oller, Fibre Bundles. New York, NY, USA: Springer, 1994.
- [3] F. Yildirim, On a special class of semi-cotangent bundle, Proceedings of the Institute of Mathematics and Mechanics, (ANAS) 41 (2015), no. 1, 25-38.
- [4] F. Yildirim and A. Salimov, Semi-cotangent bundle and problems of lifts, Turk J. Math, (2014), 38, 325-339.
- [5] H.B. Lawson and M.L. Michelsohn, Spin Geometry, Princeton University Press., Princeton, 1989.
- [6] K. Yano and S. Ishihara, Tangent and Cotangent Bundles , Marcel Dekker, Inc., New York, 1973.
- [7] N. Steenrod, The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
- [8] R. Cakan, K. Akbulut, A. Salimov, Musical isomorphisms and problems of lifts, Chin. Ann. Math. Ser. B. (2016) 37: 323.
- [9] T.V. Duc, Structure presque-transverse. J. Diff. Geom., 14(1979), No:2, 215-219.
- [10] V. V. Vishnevskii, Integrable affinor structures and their plural interpretations, Geometry, 7.J. Math. Sci., (New York) 108 (2002), no. 2, 151-187.
- [11] V. Vishnevskii, A.P. Shirokov and V.V. Shurygin, Spaces over Algebras. Kazan. Kazan Gos. Univ. 1985 (in Russian).