Araştırma Makalesi
BibTex RIS Kaynak Göster

Coefficient Bounds for Certain Subclasses of m-fold Symmetric Bi-univalent Functions Based on the Q-derivative Operator

Yıl 2018, Cilt: 6 Sayı: 2, 279 - 285, 15.10.2018

Öz

In the present study, we introduce two new subclasses of bi-univalent functions based on the q-derivative operator in which both $f$ and $f^{-1}$ are m-fold symmetric analytic functions in the open unit disk. Among other results belonging to these subclasses upper coefficients bounds $|a_{m+1}|$ and $|a_{2m+1}|$ are obtained in this study. Certain special cases are also indicated.

Kaynakça

  • [1] A. Akg¨ul, On the coefficient estimates of analytic and bi-univalent m-fold symmetric functions, Mathematica Aeterna, 7 (3) (2017) 253-260.
  • [2] S¸ . Altınkaya, S. Yalc¸ın, On some subclasses of m-fold symmetric bi-univalent functions, Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 67(1), (2018), 29-36.
  • [3] A. Aral, V. Gupta and R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, USA, 2013.
  • [4] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Universitatis Babes¸-Bolyai, Mathematica, 31(2), (1986), 70-77.
  • [5] S. Bulut, Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions, Turkish J. Math., 40, (2016), 1386-1397.
  • [6] S. Bulut, Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66(1), (2017), 108-114.
  • [7] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, NY, USA, 1983.
  • [8] S.G. Hamidi and J.M. Jahangiri, Unpredictability of the coefficients of m-fold symmetric bi-starlike functions, Internat. J. Math. 25(7), (2014), 1-8.
  • [9] F.H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46, (1908), 253-281.
  • [10] F.H. Jackson, On q-definite integrals, Quarterly J. Pure Appl. Math. 41, (1910), 193-203.
  • [11] M. Lewin, On a coefficient problem for bi-univalent functions, Proceedings of the American Mathematical Society, 18, (1967), 63-68.
  • [12] A. Mohammed and M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik, 65, (2013), 454-465.
  • [13] G. Murugusundaramoorthy, and T. Janani, Meromorphic parabolic starlike functions associated with q-hypergeometric series, ISRN Mathematical Analysis, (2014), Article ID 923607, 9 pages.
  • [14] M.E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in jzj < 1 , Arch. Rational Mech. Anal. 32, (1969), 100-112.
  • [15] H.E. O¨ zkan Uc¸ar, Coefficient inequalities for q-starlike functions, Appl. Math. Comp. 276, (2016), 122-126.
  • [16] Y. Polatoˇglu, Growth and distortion theorems for generalized q-starlike functions, Advances in Mathematics: Scientific Journal, 5, (2016), 7-12.
  • [17] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, G¨ottingen, 1975.
  • [18] S.D. Purohit and R.K. Raina, Fractional q-calculus and certain subclass of univalent analytic functions, Mathematica, 55, (2013), 62-74.
  • [19] H.M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in Univalent Functions; Fractional Calculus; and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.
  • [20] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters, 23(10), (2010), 1188-1192.
  • [21] H.M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Mathematical Journal, 7(2), (2014), 1-10.
  • [22] S. S¨umer Eker, Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turkish J. Math. 40(3), (2016), 641-646.
  • [23] T.S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
Yıl 2018, Cilt: 6 Sayı: 2, 279 - 285, 15.10.2018

Öz

Kaynakça

  • [1] A. Akg¨ul, On the coefficient estimates of analytic and bi-univalent m-fold symmetric functions, Mathematica Aeterna, 7 (3) (2017) 253-260.
  • [2] S¸ . Altınkaya, S. Yalc¸ın, On some subclasses of m-fold symmetric bi-univalent functions, Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 67(1), (2018), 29-36.
  • [3] A. Aral, V. Gupta and R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, USA, 2013.
  • [4] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Universitatis Babes¸-Bolyai, Mathematica, 31(2), (1986), 70-77.
  • [5] S. Bulut, Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions, Turkish J. Math., 40, (2016), 1386-1397.
  • [6] S. Bulut, Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66(1), (2017), 108-114.
  • [7] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, NY, USA, 1983.
  • [8] S.G. Hamidi and J.M. Jahangiri, Unpredictability of the coefficients of m-fold symmetric bi-starlike functions, Internat. J. Math. 25(7), (2014), 1-8.
  • [9] F.H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46, (1908), 253-281.
  • [10] F.H. Jackson, On q-definite integrals, Quarterly J. Pure Appl. Math. 41, (1910), 193-203.
  • [11] M. Lewin, On a coefficient problem for bi-univalent functions, Proceedings of the American Mathematical Society, 18, (1967), 63-68.
  • [12] A. Mohammed and M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik, 65, (2013), 454-465.
  • [13] G. Murugusundaramoorthy, and T. Janani, Meromorphic parabolic starlike functions associated with q-hypergeometric series, ISRN Mathematical Analysis, (2014), Article ID 923607, 9 pages.
  • [14] M.E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in jzj < 1 , Arch. Rational Mech. Anal. 32, (1969), 100-112.
  • [15] H.E. O¨ zkan Uc¸ar, Coefficient inequalities for q-starlike functions, Appl. Math. Comp. 276, (2016), 122-126.
  • [16] Y. Polatoˇglu, Growth and distortion theorems for generalized q-starlike functions, Advances in Mathematics: Scientific Journal, 5, (2016), 7-12.
  • [17] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, G¨ottingen, 1975.
  • [18] S.D. Purohit and R.K. Raina, Fractional q-calculus and certain subclass of univalent analytic functions, Mathematica, 55, (2013), 62-74.
  • [19] H.M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in Univalent Functions; Fractional Calculus; and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.
  • [20] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters, 23(10), (2010), 1188-1192.
  • [21] H.M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Mathematical Journal, 7(2), (2014), 1-10.
  • [22] S. S¨umer Eker, Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turkish J. Math. 40(3), (2016), 641-646.
  • [23] T.S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

F. Müge Sakar

H. Özlem Güney

Yayımlanma Tarihi 15 Ekim 2018
Gönderilme Tarihi 19 Ekim 2017
Kabul Tarihi 19 Ekim 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 2

Kaynak Göster

APA Sakar, F. M., & Güney, H. Ö. (2018). Coefficient Bounds for Certain Subclasses of m-fold Symmetric Bi-univalent Functions Based on the Q-derivative Operator. Konuralp Journal of Mathematics, 6(2), 279-285.
AMA Sakar FM, Güney HÖ. Coefficient Bounds for Certain Subclasses of m-fold Symmetric Bi-univalent Functions Based on the Q-derivative Operator. Konuralp J. Math. Ekim 2018;6(2):279-285.
Chicago Sakar, F. Müge, ve H. Özlem Güney. “Coefficient Bounds for Certain Subclasses of M-Fold Symmetric Bi-Univalent Functions Based on the Q-Derivative Operator”. Konuralp Journal of Mathematics 6, sy. 2 (Ekim 2018): 279-85.
EndNote Sakar FM, Güney HÖ (01 Ekim 2018) Coefficient Bounds for Certain Subclasses of m-fold Symmetric Bi-univalent Functions Based on the Q-derivative Operator. Konuralp Journal of Mathematics 6 2 279–285.
IEEE F. M. Sakar ve H. Ö. Güney, “Coefficient Bounds for Certain Subclasses of m-fold Symmetric Bi-univalent Functions Based on the Q-derivative Operator”, Konuralp J. Math., c. 6, sy. 2, ss. 279–285, 2018.
ISNAD Sakar, F. Müge - Güney, H. Özlem. “Coefficient Bounds for Certain Subclasses of M-Fold Symmetric Bi-Univalent Functions Based on the Q-Derivative Operator”. Konuralp Journal of Mathematics 6/2 (Ekim 2018), 279-285.
JAMA Sakar FM, Güney HÖ. Coefficient Bounds for Certain Subclasses of m-fold Symmetric Bi-univalent Functions Based on the Q-derivative Operator. Konuralp J. Math. 2018;6:279–285.
MLA Sakar, F. Müge ve H. Özlem Güney. “Coefficient Bounds for Certain Subclasses of M-Fold Symmetric Bi-Univalent Functions Based on the Q-Derivative Operator”. Konuralp Journal of Mathematics, c. 6, sy. 2, 2018, ss. 279-85.
Vancouver Sakar FM, Güney HÖ. Coefficient Bounds for Certain Subclasses of m-fold Symmetric Bi-univalent Functions Based on the Q-derivative Operator. Konuralp J. Math. 2018;6(2):279-85.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.