Research Article
BibTex RIS Cite
Year 2018, Volume: 6 Issue: 2, 272 - 278, 15.10.2018

Abstract

References

  • [1] Bilgici G., Two generalizations of Lucas sequence, Applied Mathematics and Computation, 245 (2014), 526-538.
  • [2] Cerda-Morales G., Matrix representation of the q-Jacobsthal numbers, Proyecciones (Antofagasta), 31.4 (2012), 345-354.
  • [3] Coskun A., Taskara N., A note on the bi-periodic Fibonacci and Lucas matrix sequences, Applied Mathematics and Computation, 320 (2018), 400-406.
  • [4] Coskun A., Taskara N., Generating matrix of the bi-periodic Lucas numbers, AIP Conference Proceedings Vol:1863, No.1 (2017), 310004.
  • [5] Edson M., Yayenie O., A new Generalization of Fibonacci sequence and Extended Binet’s Formula, Integers, 9.6 (2009),639-654.
  • [6] Falcon S., Plaza A., On the Fibonacci k-numbers, Chaos, Solitons & Fractals, 32.5 (2007), 1615-1624.
  • [7] Gulec H.H., Taskara N., On the (s; t)-Pell and (s; t) -Pell-Lucas sequences and their matrix representations, Applied Mathematics Letters, 25.10 (2012), 1554-1559.
  • [8] Hoggatt V.E., Fibonacci and Lucas numbers, Houghton Mifflin, 1969.
  • [9] Koshy T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Inc, NY, 2001.
  • [10] Nalli A., On the Hadamard Product of Fibonacci Qn matrix and Fibonacci Q􀀀n matrix, Int. J. Contemp. Math. Sciences, 1.16 (2006), 753-761.
  • [11] Ocal A.A., Tuglu N., Altinisik E., On the representation of k-generalized Fibonacci and Lucas numbers, Applied Mathematics and Computation, 170.1 (2005), 584-596.
  • [12] Sylvester J.R., Fibonacci Properties by Matrix Method, Mathematical Gazette, 63 (1979), 188-191.
  • [13] Tasci D., On the Hadamard Products of its Adjoint matrix with a square matrix, Selcuk University Journal of Science, 1.17 (2000), 43-53.
  • [14] Uslu K., Uygun S., The (s; t) Jacobsthal and (s; t) Jacobsthal-Lucas Matrix Sequences, ARS Combinatoria, 108 (2013), 13-22.
  • [15] Vajda S., Fibonacci & Lucas numbers and the golden section. Theory and Applications, Ellis Horwood Series, Mathematics and Applications, 1989.
  • [16] Yazlik Y., Taskara N., Uslu K., Yilmaz N., The Generalized (s; t)-Sequence and its Matrix Sequence, AIP Conf. Proc. Vol:1389, No.1 (2011), 381-384.
  • [17] Yilmaz N., Coskun A., Taskara N., On properties of bi-periodic Fibonacci and Lucas polynomials, AIP Conference Proceedings Vol:1863, No.1 (2017), 310002.

The Hadamard Products for Bi-periodic Fibonacci and Bi-periodic Lucas Generating Matrices

Year 2018, Volume: 6 Issue: 2, 272 - 278, 15.10.2018

Abstract

In this paper, firstly, we define the $Q_{q}$ \textit{-generating matrix} for bi-periodic Fibonacci polynomial. And we give $n$th power, determinant and some properties of the bi-periodic Fibonacci polynomial by considering this matrix representation. Also, we introduce the Hadamard products for bi-periodic Fibonacci $Q_{q}^{n}$ generating matrix and bi-periodic Lucas $Q_{l}^{n}$ generating matrix of which entries are bi-periodic Fibonacci and Lucas numbers. Then, we investigate some properties of these products.

References

  • [1] Bilgici G., Two generalizations of Lucas sequence, Applied Mathematics and Computation, 245 (2014), 526-538.
  • [2] Cerda-Morales G., Matrix representation of the q-Jacobsthal numbers, Proyecciones (Antofagasta), 31.4 (2012), 345-354.
  • [3] Coskun A., Taskara N., A note on the bi-periodic Fibonacci and Lucas matrix sequences, Applied Mathematics and Computation, 320 (2018), 400-406.
  • [4] Coskun A., Taskara N., Generating matrix of the bi-periodic Lucas numbers, AIP Conference Proceedings Vol:1863, No.1 (2017), 310004.
  • [5] Edson M., Yayenie O., A new Generalization of Fibonacci sequence and Extended Binet’s Formula, Integers, 9.6 (2009),639-654.
  • [6] Falcon S., Plaza A., On the Fibonacci k-numbers, Chaos, Solitons & Fractals, 32.5 (2007), 1615-1624.
  • [7] Gulec H.H., Taskara N., On the (s; t)-Pell and (s; t) -Pell-Lucas sequences and their matrix representations, Applied Mathematics Letters, 25.10 (2012), 1554-1559.
  • [8] Hoggatt V.E., Fibonacci and Lucas numbers, Houghton Mifflin, 1969.
  • [9] Koshy T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Inc, NY, 2001.
  • [10] Nalli A., On the Hadamard Product of Fibonacci Qn matrix and Fibonacci Q􀀀n matrix, Int. J. Contemp. Math. Sciences, 1.16 (2006), 753-761.
  • [11] Ocal A.A., Tuglu N., Altinisik E., On the representation of k-generalized Fibonacci and Lucas numbers, Applied Mathematics and Computation, 170.1 (2005), 584-596.
  • [12] Sylvester J.R., Fibonacci Properties by Matrix Method, Mathematical Gazette, 63 (1979), 188-191.
  • [13] Tasci D., On the Hadamard Products of its Adjoint matrix with a square matrix, Selcuk University Journal of Science, 1.17 (2000), 43-53.
  • [14] Uslu K., Uygun S., The (s; t) Jacobsthal and (s; t) Jacobsthal-Lucas Matrix Sequences, ARS Combinatoria, 108 (2013), 13-22.
  • [15] Vajda S., Fibonacci & Lucas numbers and the golden section. Theory and Applications, Ellis Horwood Series, Mathematics and Applications, 1989.
  • [16] Yazlik Y., Taskara N., Uslu K., Yilmaz N., The Generalized (s; t)-Sequence and its Matrix Sequence, AIP Conf. Proc. Vol:1389, No.1 (2011), 381-384.
  • [17] Yilmaz N., Coskun A., Taskara N., On properties of bi-periodic Fibonacci and Lucas polynomials, AIP Conference Proceedings Vol:1863, No.1 (2017), 310002.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Arzu Coşkun

Necati Taşkara

Publication Date October 15, 2018
Submission Date November 6, 2017
Acceptance Date October 3, 2018
Published in Issue Year 2018 Volume: 6 Issue: 2

Cite

APA Coşkun, A., & Taşkara, N. (2018). The Hadamard Products for Bi-periodic Fibonacci and Bi-periodic Lucas Generating Matrices. Konuralp Journal of Mathematics, 6(2), 272-278.
AMA Coşkun A, Taşkara N. The Hadamard Products for Bi-periodic Fibonacci and Bi-periodic Lucas Generating Matrices. Konuralp J. Math. October 2018;6(2):272-278.
Chicago Coşkun, Arzu, and Necati Taşkara. “The Hadamard Products for Bi-Periodic Fibonacci and Bi-Periodic Lucas Generating Matrices”. Konuralp Journal of Mathematics 6, no. 2 (October 2018): 272-78.
EndNote Coşkun A, Taşkara N (October 1, 2018) The Hadamard Products for Bi-periodic Fibonacci and Bi-periodic Lucas Generating Matrices. Konuralp Journal of Mathematics 6 2 272–278.
IEEE A. Coşkun and N. Taşkara, “The Hadamard Products for Bi-periodic Fibonacci and Bi-periodic Lucas Generating Matrices”, Konuralp J. Math., vol. 6, no. 2, pp. 272–278, 2018.
ISNAD Coşkun, Arzu - Taşkara, Necati. “The Hadamard Products for Bi-Periodic Fibonacci and Bi-Periodic Lucas Generating Matrices”. Konuralp Journal of Mathematics 6/2 (October 2018), 272-278.
JAMA Coşkun A, Taşkara N. The Hadamard Products for Bi-periodic Fibonacci and Bi-periodic Lucas Generating Matrices. Konuralp J. Math. 2018;6:272–278.
MLA Coşkun, Arzu and Necati Taşkara. “The Hadamard Products for Bi-Periodic Fibonacci and Bi-Periodic Lucas Generating Matrices”. Konuralp Journal of Mathematics, vol. 6, no. 2, 2018, pp. 272-8.
Vancouver Coşkun A, Taşkara N. The Hadamard Products for Bi-periodic Fibonacci and Bi-periodic Lucas Generating Matrices. Konuralp J. Math. 2018;6(2):272-8.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.