Research Article
BibTex RIS Cite

Certain properties for spiral-like functions associated with Ruscheweyh-type q-difference operator

Year 2018, Volume: 6 Issue: 2, 218 - 225, 15.10.2018

Abstract

In this paper, making use of the Ruscheweyh- type $q$-difference operator $\mathcal{D}_q(\mathcal{R}_q^\alpha f(z))$ we introduce a new subclass of spiral-like functions and discuss some subordination results and Fekete-Szeg\"{o} problem for this generalized function class. Further, some known and new results which follow as special cases of our results are also mentioned.

References

  • [1] S. Araci, U. Duran, M. Acikgoz, H. M. Srivastava, A certain (p, q)-derivative operator and associated divided differences, J. Inequal. Appl., (2016) 2016:301.
  • [2] A. Aral, V. Gupta, R. P. Agarwal, Applications of q-calculus in operator theory, Springer, New York, 2013.
  • [3] F. H. Jackson, On q-functions and a certain difference operator, Trans. R. Soc. Edinburgh, 46 (1908), 253-281.
  • [4] S. Kanas, D. R˘aducanu, Some subclass of analytic functions related to conic domains, Math. Slovaca, 64(5)(2014), 1183-1196.
  • [5] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
  • [6] R. J. Libera, Univalent a􀀀spiral functions, Canad. J. Math., 19 (1967), 449-456.
  • [7] A. Mohammed, M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik, 65(4) (2013), 454-464.
  • [8] S. Mahmood, J. Sok´ol, New subclasses of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math., 71 (2017), 1345-1357.
  • [9] Z. Nehari, Conformal mapping, McGraw-Hill, New-York, 1952.
  • [10] H. Orhan, D. R˘aducanu, M. Caglar, M. Rayram, Coefficient estimates and other properties for a class of spirallike functions associated with a differential operator, Abstr. Anal. Appl., vol.2013, Art. ID415319, 7pp.
  • [11] S. D. Purohit, R. K. Raina, Fractional q-calculus and certain subclasses of univalent analytic functions, Mathematica, 55(78), no.1 (2013), 62-74.
  • [12] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
  • [13] H. Silverman, Sufficient conditions for spiral-likeness, Internat. J. Math. Sci., 12(4) (1989), 641-644.
  • [14] S. Singh, A subordination theorem for spiral-like functions, Internat. J. Math. Math. Sci., 24(7) (2000), 433-435.
  • [15] L. ˇSpaˇcek, Contribution ` a la theorie des fonctions univalents, Cas. Mat. Fys., 62(2) (1932), 12-19.
  • [16] H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szeg¨o problem for a subclass of close-to-convex functions, Complex Var. Theory Appl., 44 (2001), 145-163.
  • [17] H. S. Wilf, Subordinating factor sequence for convex maps of the unit circle, Proc. Amer. Math. Soc., 12 (1961), 689-693.
Year 2018, Volume: 6 Issue: 2, 218 - 225, 15.10.2018

Abstract

References

  • [1] S. Araci, U. Duran, M. Acikgoz, H. M. Srivastava, A certain (p, q)-derivative operator and associated divided differences, J. Inequal. Appl., (2016) 2016:301.
  • [2] A. Aral, V. Gupta, R. P. Agarwal, Applications of q-calculus in operator theory, Springer, New York, 2013.
  • [3] F. H. Jackson, On q-functions and a certain difference operator, Trans. R. Soc. Edinburgh, 46 (1908), 253-281.
  • [4] S. Kanas, D. R˘aducanu, Some subclass of analytic functions related to conic domains, Math. Slovaca, 64(5)(2014), 1183-1196.
  • [5] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
  • [6] R. J. Libera, Univalent a􀀀spiral functions, Canad. J. Math., 19 (1967), 449-456.
  • [7] A. Mohammed, M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik, 65(4) (2013), 454-464.
  • [8] S. Mahmood, J. Sok´ol, New subclasses of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math., 71 (2017), 1345-1357.
  • [9] Z. Nehari, Conformal mapping, McGraw-Hill, New-York, 1952.
  • [10] H. Orhan, D. R˘aducanu, M. Caglar, M. Rayram, Coefficient estimates and other properties for a class of spirallike functions associated with a differential operator, Abstr. Anal. Appl., vol.2013, Art. ID415319, 7pp.
  • [11] S. D. Purohit, R. K. Raina, Fractional q-calculus and certain subclasses of univalent analytic functions, Mathematica, 55(78), no.1 (2013), 62-74.
  • [12] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
  • [13] H. Silverman, Sufficient conditions for spiral-likeness, Internat. J. Math. Sci., 12(4) (1989), 641-644.
  • [14] S. Singh, A subordination theorem for spiral-like functions, Internat. J. Math. Math. Sci., 24(7) (2000), 433-435.
  • [15] L. ˇSpaˇcek, Contribution ` a la theorie des fonctions univalents, Cas. Mat. Fys., 62(2) (1932), 12-19.
  • [16] H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szeg¨o problem for a subclass of close-to-convex functions, Complex Var. Theory Appl., 44 (2001), 145-163.
  • [17] H. S. Wilf, Subordinating factor sequence for convex maps of the unit circle, Proc. Amer. Math. Soc., 12 (1961), 689-693.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Raducanu Dorina 0000-0003-2348-1874

Murugusundaramoorthy Gangadharan

Publication Date October 15, 2018
Submission Date February 1, 2018
Acceptance Date October 8, 2018
Published in Issue Year 2018 Volume: 6 Issue: 2

Cite

APA Dorina, R., & Gangadharan, M. (2018). Certain properties for spiral-like functions associated with Ruscheweyh-type q-difference operator. Konuralp Journal of Mathematics, 6(2), 218-225.
AMA Dorina R, Gangadharan M. Certain properties for spiral-like functions associated with Ruscheweyh-type q-difference operator. Konuralp J. Math. October 2018;6(2):218-225.
Chicago Dorina, Raducanu, and Murugusundaramoorthy Gangadharan. “Certain Properties for Spiral-Like Functions Associated With Ruscheweyh-Type Q-Difference Operator”. Konuralp Journal of Mathematics 6, no. 2 (October 2018): 218-25.
EndNote Dorina R, Gangadharan M (October 1, 2018) Certain properties for spiral-like functions associated with Ruscheweyh-type q-difference operator. Konuralp Journal of Mathematics 6 2 218–225.
IEEE R. Dorina and M. Gangadharan, “Certain properties for spiral-like functions associated with Ruscheweyh-type q-difference operator”, Konuralp J. Math., vol. 6, no. 2, pp. 218–225, 2018.
ISNAD Dorina, Raducanu - Gangadharan, Murugusundaramoorthy. “Certain Properties for Spiral-Like Functions Associated With Ruscheweyh-Type Q-Difference Operator”. Konuralp Journal of Mathematics 6/2 (October 2018), 218-225.
JAMA Dorina R, Gangadharan M. Certain properties for spiral-like functions associated with Ruscheweyh-type q-difference operator. Konuralp J. Math. 2018;6:218–225.
MLA Dorina, Raducanu and Murugusundaramoorthy Gangadharan. “Certain Properties for Spiral-Like Functions Associated With Ruscheweyh-Type Q-Difference Operator”. Konuralp Journal of Mathematics, vol. 6, no. 2, 2018, pp. 218-25.
Vancouver Dorina R, Gangadharan M. Certain properties for spiral-like functions associated with Ruscheweyh-type q-difference operator. Konuralp J. Math. 2018;6(2):218-25.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.