On Some Sequence Spaces Related to a Sequence in a Normed space
Year 2019,
Volume: 7 Issue: 1, 33 - 37, 15.04.2019
Ramazan Kama
,
Bilal Altay
Abstract
In this paper, we introduce some new multiplier sequence spaces by using sequences in a normed space $X$ and matrix domain of Ces\'aro summability method in $\ell_\infty$ and $c_0$. Then we obtain the characterizations of completeness and barrelledness of normed space $X$ through its weakly and weakly* unconditionally Cauchy series.
References
- [1] A. Aizpuru, F. J. Perez-Fernandez, Characterizations of series in Banach spaces, Acta Math. Univ. Comenian. Vol:58, No.2 (1999), 337-344.
- [2] F.Albiac, N. J.Kalton, Topics in Banach Spaces Theory, Springer-Verlag, New York, 2006.
- [3] B. Altay, F. Başar, Certain topological properties and duals of the domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. Vol:336, No.2
(2007), 632-645.
- [4] C. Bessaga, A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Stud. Math. Vol:17, (1958), 151-164.
- [5] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984.
- [6] H. B. Ellidokuzoğlu, S. Demiriz, Ali Köseoglu, On the paranormed binomial sequence spaces, Univers. J. Math. Appl. Vol:1, No.3 (2018), 137-147.
- [7] M. Kirişçi, The Application Domain of infinite matrices with algorithms, Univers. J. Math. Appl. Vol:1, No.1 (2018), 1-9.
- [8] E. Malkowsky, F. Özger, A note on some sequence spaces of weighted means, Filomat Vol:26, (2012), 511-518.
- [9] E. Malkowsky, F. Özger, V. Velickovic, Some spaces related to Cesa´ro sequence spaces and an application to crystallography, MATCH Commun. Math.
Comput. Chem. Vol:70, No.3 (2013), 867-884.
- [10] P. -N. Ng, P. -Y. Lee, Ces`aro sequences spaces of non-absolute type, Comment. Math. Prace Mat. Vol:20, No.2 (1978), 429-433.
- [11] F.J. Perez-Fernandez, F. Benıtez-Trujillo, A. Aizpuru, Characterizations of completeness of normed spaces through weakly unconditionally Cauchy
series, Czechoslovak Math. J. Vol:50, No.125 (2000), 889-896.
- [12] J. Shiue, On the Cesaro sequence spaces, Tamkang J. Math. Vol:1, No.1 (1970), 19-25.
- [13] M. S¸engönül, F. Başar, Some new Cesaro sequence spaces of non-absolute type which include the spaces c0 and c, Soochow J. Math. Vol:31, No.1
(2005), 107-119.
- [14] N. Şimşek, V. Karakaya, Structure and some geometric properties of generalized Ces`aro sequence space, Int. J. Contemp. Math. Sci. Vol:3, No.5-8
(2008), 389-399.
Year 2019,
Volume: 7 Issue: 1, 33 - 37, 15.04.2019
Ramazan Kama
,
Bilal Altay
References
- [1] A. Aizpuru, F. J. Perez-Fernandez, Characterizations of series in Banach spaces, Acta Math. Univ. Comenian. Vol:58, No.2 (1999), 337-344.
- [2] F.Albiac, N. J.Kalton, Topics in Banach Spaces Theory, Springer-Verlag, New York, 2006.
- [3] B. Altay, F. Başar, Certain topological properties and duals of the domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. Vol:336, No.2
(2007), 632-645.
- [4] C. Bessaga, A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Stud. Math. Vol:17, (1958), 151-164.
- [5] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984.
- [6] H. B. Ellidokuzoğlu, S. Demiriz, Ali Köseoglu, On the paranormed binomial sequence spaces, Univers. J. Math. Appl. Vol:1, No.3 (2018), 137-147.
- [7] M. Kirişçi, The Application Domain of infinite matrices with algorithms, Univers. J. Math. Appl. Vol:1, No.1 (2018), 1-9.
- [8] E. Malkowsky, F. Özger, A note on some sequence spaces of weighted means, Filomat Vol:26, (2012), 511-518.
- [9] E. Malkowsky, F. Özger, V. Velickovic, Some spaces related to Cesa´ro sequence spaces and an application to crystallography, MATCH Commun. Math.
Comput. Chem. Vol:70, No.3 (2013), 867-884.
- [10] P. -N. Ng, P. -Y. Lee, Ces`aro sequences spaces of non-absolute type, Comment. Math. Prace Mat. Vol:20, No.2 (1978), 429-433.
- [11] F.J. Perez-Fernandez, F. Benıtez-Trujillo, A. Aizpuru, Characterizations of completeness of normed spaces through weakly unconditionally Cauchy
series, Czechoslovak Math. J. Vol:50, No.125 (2000), 889-896.
- [12] J. Shiue, On the Cesaro sequence spaces, Tamkang J. Math. Vol:1, No.1 (1970), 19-25.
- [13] M. S¸engönül, F. Başar, Some new Cesaro sequence spaces of non-absolute type which include the spaces c0 and c, Soochow J. Math. Vol:31, No.1
(2005), 107-119.
- [14] N. Şimşek, V. Karakaya, Structure and some geometric properties of generalized Ces`aro sequence space, Int. J. Contemp. Math. Sci. Vol:3, No.5-8
(2008), 389-399.