Hermite-Hadamard Type Inequalities for Generalized Fractional Integrals via Strongly Convex Functions
Year 2019,
Volume: 7 Issue: 2, 268 - 273, 15.10.2019
Hasan Fehmi Gidergelmez
,
Abdullah Akkurt
,
Hüseyin Yıldırım
Abstract
In this paper, the authors have obtained some new developments of Hermite-Hadamard type inequalities for generalized fractional integrals defined by Mubeen et. al. \cite{SSM}. In the last part of the article, some results are given with the help of the definition of many fractional integral arising from the generalization.
References
- [1] A. Akkurt, M. E. Yıldırım and H. Yıldırım, On some Integral Inequalities for (k;h)Riemann-Liouville fractional integral, New Trends in Mathematical
Sciences (NTMSCI), 4(1), (2016), 138-146.
- [2] B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 7, 72–75 (1966).
- [3] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Diferential Equations, Elsevier B.V., Amsterdam, Netherlands,
2006.
- [4] N. Merentes and K. Nikodem, Remarks on strongly convex functions. Aequ. Math. 80, 193–199 (2010).
- [5] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives-Theory and Applications, Gordon and Breach, Linghorne, 1993.
- [6] S. Mubeen, S. Iqbal and M. Tomar, Hermite-Hadamard Type Inequalities via Fractional Integrals of a Function With Respect to Another Function and
kparameter, J. Inequal. Math. Appl. 1 (2017), 1-9.
- [7] M. Zeki Sarikaya, E. Set, H. Yaldiz and N. Basak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities,
Mathematical and Computer Modelling, doi:10.1016/j.mcm.2011.12.048, 57 (2013) 2403–2407.
- [8] F. Ertugral, M. Zeki Sarıkaya and H. Budak, On Refinements of Hermite-Hadamard-Fejer Type Inequalities for Fractional Integral Operators,
Applications and Applied Mathematics,Vol. 13, Issue 1 (June 2018), pp. 426-442.
- [9] M. Zeki Sarikaya and H. Yildirim, “On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals”, Miskolc Mathematical Notes,
17(2), 1049-1059, 2016.
- [10] H. Budak and M. Zeki Sarikaya, Hermite-Hadamard type inequalities for s-convex mappings via fractional integrals of a function with respect to another
function, Fasciculi Mathematici, No.27, pp.25-36, 2016. DOI:10.1515/fascmath-2016-0014.
- [11] M. Zeki Sarikaya and H. Budak, ”Generalized Hermite-Hadamard type integral inequalities for fractional integrals”, FILOMAT, 30:5 (2016), 1315–1326.
- [12] J. Vanterler da C. Sousa, E. Capelas de Oliveira, The Minkowski’s inequality by means of a generalized fractional integral. AIMS Mathematics, 2018,
3(1): 131-147. doi: 10.3934/Math.2018.1.131
- [13] J. Sousa, D. S. Oliveira and E. C. de Oliveira, Gruss-type inequality by mean of a fractional integral, arXiv:1705.00965, (2017).
- [14] E. Set, Z. Dahmani and ˙I. Mumcu, New extensions of Chebyshev type inequalities using generalized Katugampola integrals via
Polya-Szego inequality. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 8(2), 137-144.
doi:http://dx.doi.org/10.11121/ijocta.01.2018.00541.
- [15] S.K. Ntouyas, P. Agarwal and J. Tariboon, On P´olya-Szeg¨o and Chebyshev type inequalities involving the Riemann-Liouville fractional integral
op-erators.J. Math. Inequal,10(2), 491-504.
- [16] P. Agarwal, M. Jleli and M. Tomar, Certain Hermite-Hadamard type inequalities via generalized kfractional integrals. J. Inequal. Appl. 2017(1) (2017).
- [17] P. Agarwal J. Tariboon, and S.K. Ntouyas, Some generalized Riemann-Liouville kfractional integral inequalities. Journal of Inequalities and
Applications, 2016, 122. https://doi.org/10.1186/s13660-016-1067-3.
- [18] M. Tomar, S. Mubeen and J. Choi, Certain inequalities associated with Hadamard k-fractional integral operators, Journal of Inequalities and
Applications20162016:234, https://doi.org/10.1186/s13660-016-1178-x.
- [19] J. Vanterler da C. Sousa, E. Capelas de Oliveira., A Gronwall inequality and the Cauchy-type problem by means of yHilfer operator, arXiv:1709.03634,
2017.
Year 2019,
Volume: 7 Issue: 2, 268 - 273, 15.10.2019
Hasan Fehmi Gidergelmez
,
Abdullah Akkurt
,
Hüseyin Yıldırım
References
- [1] A. Akkurt, M. E. Yıldırım and H. Yıldırım, On some Integral Inequalities for (k;h)Riemann-Liouville fractional integral, New Trends in Mathematical
Sciences (NTMSCI), 4(1), (2016), 138-146.
- [2] B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 7, 72–75 (1966).
- [3] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Diferential Equations, Elsevier B.V., Amsterdam, Netherlands,
2006.
- [4] N. Merentes and K. Nikodem, Remarks on strongly convex functions. Aequ. Math. 80, 193–199 (2010).
- [5] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives-Theory and Applications, Gordon and Breach, Linghorne, 1993.
- [6] S. Mubeen, S. Iqbal and M. Tomar, Hermite-Hadamard Type Inequalities via Fractional Integrals of a Function With Respect to Another Function and
kparameter, J. Inequal. Math. Appl. 1 (2017), 1-9.
- [7] M. Zeki Sarikaya, E. Set, H. Yaldiz and N. Basak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities,
Mathematical and Computer Modelling, doi:10.1016/j.mcm.2011.12.048, 57 (2013) 2403–2407.
- [8] F. Ertugral, M. Zeki Sarıkaya and H. Budak, On Refinements of Hermite-Hadamard-Fejer Type Inequalities for Fractional Integral Operators,
Applications and Applied Mathematics,Vol. 13, Issue 1 (June 2018), pp. 426-442.
- [9] M. Zeki Sarikaya and H. Yildirim, “On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals”, Miskolc Mathematical Notes,
17(2), 1049-1059, 2016.
- [10] H. Budak and M. Zeki Sarikaya, Hermite-Hadamard type inequalities for s-convex mappings via fractional integrals of a function with respect to another
function, Fasciculi Mathematici, No.27, pp.25-36, 2016. DOI:10.1515/fascmath-2016-0014.
- [11] M. Zeki Sarikaya and H. Budak, ”Generalized Hermite-Hadamard type integral inequalities for fractional integrals”, FILOMAT, 30:5 (2016), 1315–1326.
- [12] J. Vanterler da C. Sousa, E. Capelas de Oliveira, The Minkowski’s inequality by means of a generalized fractional integral. AIMS Mathematics, 2018,
3(1): 131-147. doi: 10.3934/Math.2018.1.131
- [13] J. Sousa, D. S. Oliveira and E. C. de Oliveira, Gruss-type inequality by mean of a fractional integral, arXiv:1705.00965, (2017).
- [14] E. Set, Z. Dahmani and ˙I. Mumcu, New extensions of Chebyshev type inequalities using generalized Katugampola integrals via
Polya-Szego inequality. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 8(2), 137-144.
doi:http://dx.doi.org/10.11121/ijocta.01.2018.00541.
- [15] S.K. Ntouyas, P. Agarwal and J. Tariboon, On P´olya-Szeg¨o and Chebyshev type inequalities involving the Riemann-Liouville fractional integral
op-erators.J. Math. Inequal,10(2), 491-504.
- [16] P. Agarwal, M. Jleli and M. Tomar, Certain Hermite-Hadamard type inequalities via generalized kfractional integrals. J. Inequal. Appl. 2017(1) (2017).
- [17] P. Agarwal J. Tariboon, and S.K. Ntouyas, Some generalized Riemann-Liouville kfractional integral inequalities. Journal of Inequalities and
Applications, 2016, 122. https://doi.org/10.1186/s13660-016-1067-3.
- [18] M. Tomar, S. Mubeen and J. Choi, Certain inequalities associated with Hadamard k-fractional integral operators, Journal of Inequalities and
Applications20162016:234, https://doi.org/10.1186/s13660-016-1178-x.
- [19] J. Vanterler da C. Sousa, E. Capelas de Oliveira., A Gronwall inequality and the Cauchy-type problem by means of yHilfer operator, arXiv:1709.03634,
2017.