Research Article
BibTex RIS Cite

Hermite-Hadamard Type Inequalities for Generalized Fractional Integrals via Strongly Convex Functions

Year 2019, Volume: 7 Issue: 2, 268 - 273, 15.10.2019

Abstract

In this paper, the authors have obtained some new developments of Hermite-Hadamard type inequalities for generalized fractional integrals defined by Mubeen et. al. \cite{SSM}. In the last part of the article, some results are given with the help of the definition of many fractional integral arising from the generalization.

References

  • [1] A. Akkurt, M. E. Yıldırım and H. Yıldırım, On some Integral Inequalities for (k;h)􀀀Riemann-Liouville fractional integral, New Trends in Mathematical Sciences (NTMSCI), 4(1), (2016), 138-146.
  • [2] B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 7, 72–75 (1966).
  • [3] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Diferential Equations, Elsevier B.V., Amsterdam, Netherlands, 2006.
  • [4] N. Merentes and K. Nikodem, Remarks on strongly convex functions. Aequ. Math. 80, 193–199 (2010).
  • [5] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives-Theory and Applications, Gordon and Breach, Linghorne, 1993.
  • [6] S. Mubeen, S. Iqbal and M. Tomar, Hermite-Hadamard Type Inequalities via Fractional Integrals of a Function With Respect to Another Function and k􀀀parameter, J. Inequal. Math. Appl. 1 (2017), 1-9.
  • [7] M. Zeki Sarikaya, E. Set, H. Yaldiz and N. Basak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, doi:10.1016/j.mcm.2011.12.048, 57 (2013) 2403–2407.
  • [8] F. Ertugral, M. Zeki Sarıkaya and H. Budak, On Refinements of Hermite-Hadamard-Fejer Type Inequalities for Fractional Integral Operators, Applications and Applied Mathematics,Vol. 13, Issue 1 (June 2018), pp. 426-442.
  • [9] M. Zeki Sarikaya and H. Yildirim, “On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals”, Miskolc Mathematical Notes, 17(2), 1049-1059, 2016.
  • [10] H. Budak and M. Zeki Sarikaya, Hermite-Hadamard type inequalities for s-convex mappings via fractional integrals of a function with respect to another function, Fasciculi Mathematici, No.27, pp.25-36, 2016. DOI:10.1515/fascmath-2016-0014.
  • [11] M. Zeki Sarikaya and H. Budak, ”Generalized Hermite-Hadamard type integral inequalities for fractional integrals”, FILOMAT, 30:5 (2016), 1315–1326.
  • [12] J. Vanterler da C. Sousa, E. Capelas de Oliveira, The Minkowski’s inequality by means of a generalized fractional integral. AIMS Mathematics, 2018, 3(1): 131-147. doi: 10.3934/Math.2018.1.131
  • [13] J. Sousa, D. S. Oliveira and E. C. de Oliveira, Gruss-type inequality by mean of a fractional integral, arXiv:1705.00965, (2017).
  • [14] E. Set, Z. Dahmani and ˙I. Mumcu, New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Polya-Szego inequality. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 8(2), 137-144. doi:http://dx.doi.org/10.11121/ijocta.01.2018.00541.
  • [15] S.K. Ntouyas, P. Agarwal and J. Tariboon, On P´olya-Szeg¨o and Chebyshev type inequalities involving the Riemann-Liouville fractional integral op-erators.J. Math. Inequal,10(2), 491-504.
  • [16] P. Agarwal, M. Jleli and M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k􀀀fractional integrals. J. Inequal. Appl. 2017(1) (2017).
  • [17] P. Agarwal J. Tariboon, and S.K. Ntouyas, Some generalized Riemann-Liouville k􀀀fractional integral inequalities. Journal of Inequalities and Applications, 2016, 122. https://doi.org/10.1186/s13660-016-1067-3.
  • [18] M. Tomar, S. Mubeen and J. Choi, Certain inequalities associated with Hadamard k-fractional integral operators, Journal of Inequalities and Applications20162016:234, https://doi.org/10.1186/s13660-016-1178-x.
  • [19] J. Vanterler da C. Sousa, E. Capelas de Oliveira., A Gronwall inequality and the Cauchy-type problem by means of y􀀀Hilfer operator, arXiv:1709.03634, 2017.
Year 2019, Volume: 7 Issue: 2, 268 - 273, 15.10.2019

Abstract

References

  • [1] A. Akkurt, M. E. Yıldırım and H. Yıldırım, On some Integral Inequalities for (k;h)􀀀Riemann-Liouville fractional integral, New Trends in Mathematical Sciences (NTMSCI), 4(1), (2016), 138-146.
  • [2] B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 7, 72–75 (1966).
  • [3] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Diferential Equations, Elsevier B.V., Amsterdam, Netherlands, 2006.
  • [4] N. Merentes and K. Nikodem, Remarks on strongly convex functions. Aequ. Math. 80, 193–199 (2010).
  • [5] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives-Theory and Applications, Gordon and Breach, Linghorne, 1993.
  • [6] S. Mubeen, S. Iqbal and M. Tomar, Hermite-Hadamard Type Inequalities via Fractional Integrals of a Function With Respect to Another Function and k􀀀parameter, J. Inequal. Math. Appl. 1 (2017), 1-9.
  • [7] M. Zeki Sarikaya, E. Set, H. Yaldiz and N. Basak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, doi:10.1016/j.mcm.2011.12.048, 57 (2013) 2403–2407.
  • [8] F. Ertugral, M. Zeki Sarıkaya and H. Budak, On Refinements of Hermite-Hadamard-Fejer Type Inequalities for Fractional Integral Operators, Applications and Applied Mathematics,Vol. 13, Issue 1 (June 2018), pp. 426-442.
  • [9] M. Zeki Sarikaya and H. Yildirim, “On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals”, Miskolc Mathematical Notes, 17(2), 1049-1059, 2016.
  • [10] H. Budak and M. Zeki Sarikaya, Hermite-Hadamard type inequalities for s-convex mappings via fractional integrals of a function with respect to another function, Fasciculi Mathematici, No.27, pp.25-36, 2016. DOI:10.1515/fascmath-2016-0014.
  • [11] M. Zeki Sarikaya and H. Budak, ”Generalized Hermite-Hadamard type integral inequalities for fractional integrals”, FILOMAT, 30:5 (2016), 1315–1326.
  • [12] J. Vanterler da C. Sousa, E. Capelas de Oliveira, The Minkowski’s inequality by means of a generalized fractional integral. AIMS Mathematics, 2018, 3(1): 131-147. doi: 10.3934/Math.2018.1.131
  • [13] J. Sousa, D. S. Oliveira and E. C. de Oliveira, Gruss-type inequality by mean of a fractional integral, arXiv:1705.00965, (2017).
  • [14] E. Set, Z. Dahmani and ˙I. Mumcu, New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Polya-Szego inequality. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 8(2), 137-144. doi:http://dx.doi.org/10.11121/ijocta.01.2018.00541.
  • [15] S.K. Ntouyas, P. Agarwal and J. Tariboon, On P´olya-Szeg¨o and Chebyshev type inequalities involving the Riemann-Liouville fractional integral op-erators.J. Math. Inequal,10(2), 491-504.
  • [16] P. Agarwal, M. Jleli and M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k􀀀fractional integrals. J. Inequal. Appl. 2017(1) (2017).
  • [17] P. Agarwal J. Tariboon, and S.K. Ntouyas, Some generalized Riemann-Liouville k􀀀fractional integral inequalities. Journal of Inequalities and Applications, 2016, 122. https://doi.org/10.1186/s13660-016-1067-3.
  • [18] M. Tomar, S. Mubeen and J. Choi, Certain inequalities associated with Hadamard k-fractional integral operators, Journal of Inequalities and Applications20162016:234, https://doi.org/10.1186/s13660-016-1178-x.
  • [19] J. Vanterler da C. Sousa, E. Capelas de Oliveira., A Gronwall inequality and the Cauchy-type problem by means of y􀀀Hilfer operator, arXiv:1709.03634, 2017.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hasan Fehmi Gidergelmez

Abdullah Akkurt

Hüseyin Yıldırım

Publication Date October 15, 2019
Submission Date February 15, 2018
Acceptance Date April 30, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA Gidergelmez, H. F., Akkurt, A., & Yıldırım, H. (2019). Hermite-Hadamard Type Inequalities for Generalized Fractional Integrals via Strongly Convex Functions. Konuralp Journal of Mathematics, 7(2), 268-273.
AMA Gidergelmez HF, Akkurt A, Yıldırım H. Hermite-Hadamard Type Inequalities for Generalized Fractional Integrals via Strongly Convex Functions. Konuralp J. Math. October 2019;7(2):268-273.
Chicago Gidergelmez, Hasan Fehmi, Abdullah Akkurt, and Hüseyin Yıldırım. “Hermite-Hadamard Type Inequalities for Generalized Fractional Integrals via Strongly Convex Functions”. Konuralp Journal of Mathematics 7, no. 2 (October 2019): 268-73.
EndNote Gidergelmez HF, Akkurt A, Yıldırım H (October 1, 2019) Hermite-Hadamard Type Inequalities for Generalized Fractional Integrals via Strongly Convex Functions. Konuralp Journal of Mathematics 7 2 268–273.
IEEE H. F. Gidergelmez, A. Akkurt, and H. Yıldırım, “Hermite-Hadamard Type Inequalities for Generalized Fractional Integrals via Strongly Convex Functions”, Konuralp J. Math., vol. 7, no. 2, pp. 268–273, 2019.
ISNAD Gidergelmez, Hasan Fehmi et al. “Hermite-Hadamard Type Inequalities for Generalized Fractional Integrals via Strongly Convex Functions”. Konuralp Journal of Mathematics 7/2 (October 2019), 268-273.
JAMA Gidergelmez HF, Akkurt A, Yıldırım H. Hermite-Hadamard Type Inequalities for Generalized Fractional Integrals via Strongly Convex Functions. Konuralp J. Math. 2019;7:268–273.
MLA Gidergelmez, Hasan Fehmi et al. “Hermite-Hadamard Type Inequalities for Generalized Fractional Integrals via Strongly Convex Functions”. Konuralp Journal of Mathematics, vol. 7, no. 2, 2019, pp. 268-73.
Vancouver Gidergelmez HF, Akkurt A, Yıldırım H. Hermite-Hadamard Type Inequalities for Generalized Fractional Integrals via Strongly Convex Functions. Konuralp J. Math. 2019;7(2):268-73.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.