Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite
Year 2019, Volume: 7 Issue: 2, 395 - 398, 15.10.2019

Abstract

References

  • [1] A. Iampan. A new branch of the logical algebra: UP-algebras. J. Algebra Relat Top., 5(1)(2017), 35-–54.
  • [2] A. Iampan. The UP-isomorphism theorems for UP-algebras. Discuss. Math. General Al. Appl., 39(1)(2019), 113–123.
  • [3] W. B. V. Kandasamy. Bialgebraic structures and Smarandache bialgebraic structures. India: American Research Press, 2003.
  • [4] P. Mosrijai, A. Satirad and A. Iampan. The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UP-homomorphism, Fund. J. Math. Appl., 1(1)(2018), 12–17.
  • [5] P. Mosrijai and A. Iampan. A new branch of bialgebraic structures: UP-bialgebras. J. Taibah University Sci., 13(1)(2019), 450-–459.
  • [6] D. A. Romano. Proper UP-filters in UP-algebra. Universal J. Math. Appl., 1(2)(2018), 98–100.
  • [7] D. A. Romano. Some properties of proper UP-filters of UP-algebras. Fund. J. Math. Appl., 1(2)(2018), 109–111.
  • [8] D. A. Romano. Notes on UP-ideals in UP-algebras. Comm. Adv. Math. Sci., 1(1)(2018), 35–38.

The First Theorem on UP-Biisomorphism Between UP-Bialgebras

Year 2019, Volume: 7 Issue: 2, 395 - 398, 15.10.2019

Abstract

The concept of UP-bialgebras was introduced and analyzed  by Mosrijai and Iampan at the beginning of 2019. In this article we analyzed a UP-biisomorphism between UP-bialgebras.

References

  • [1] A. Iampan. A new branch of the logical algebra: UP-algebras. J. Algebra Relat Top., 5(1)(2017), 35-–54.
  • [2] A. Iampan. The UP-isomorphism theorems for UP-algebras. Discuss. Math. General Al. Appl., 39(1)(2019), 113–123.
  • [3] W. B. V. Kandasamy. Bialgebraic structures and Smarandache bialgebraic structures. India: American Research Press, 2003.
  • [4] P. Mosrijai, A. Satirad and A. Iampan. The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UP-homomorphism, Fund. J. Math. Appl., 1(1)(2018), 12–17.
  • [5] P. Mosrijai and A. Iampan. A new branch of bialgebraic structures: UP-bialgebras. J. Taibah University Sci., 13(1)(2019), 450-–459.
  • [6] D. A. Romano. Proper UP-filters in UP-algebra. Universal J. Math. Appl., 1(2)(2018), 98–100.
  • [7] D. A. Romano. Some properties of proper UP-filters of UP-algebras. Fund. J. Math. Appl., 1(2)(2018), 109–111.
  • [8] D. A. Romano. Notes on UP-ideals in UP-algebras. Comm. Adv. Math. Sci., 1(1)(2018), 35–38.
There are 8 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Daniel A. Romano 0000-0003-1148-3258

Publication Date October 15, 2019
Submission Date April 1, 2019
Acceptance Date May 29, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA Romano, D. A. (2019). The First Theorem on UP-Biisomorphism Between UP-Bialgebras. Konuralp Journal of Mathematics, 7(2), 395-398.
AMA Romano DA. The First Theorem on UP-Biisomorphism Between UP-Bialgebras. Konuralp J. Math. October 2019;7(2):395-398.
Chicago Romano, Daniel A. “The First Theorem on UP-Biisomorphism Between UP-Bialgebras”. Konuralp Journal of Mathematics 7, no. 2 (October 2019): 395-98.
EndNote Romano DA (October 1, 2019) The First Theorem on UP-Biisomorphism Between UP-Bialgebras. Konuralp Journal of Mathematics 7 2 395–398.
IEEE D. A. Romano, “The First Theorem on UP-Biisomorphism Between UP-Bialgebras”, Konuralp J. Math., vol. 7, no. 2, pp. 395–398, 2019.
ISNAD Romano, Daniel A. “The First Theorem on UP-Biisomorphism Between UP-Bialgebras”. Konuralp Journal of Mathematics 7/2 (October 2019), 395-398.
JAMA Romano DA. The First Theorem on UP-Biisomorphism Between UP-Bialgebras. Konuralp J. Math. 2019;7:395–398.
MLA Romano, Daniel A. “The First Theorem on UP-Biisomorphism Between UP-Bialgebras”. Konuralp Journal of Mathematics, vol. 7, no. 2, 2019, pp. 395-8.
Vancouver Romano DA. The First Theorem on UP-Biisomorphism Between UP-Bialgebras. Konuralp J. Math. 2019;7(2):395-8.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.