[1] A. Bejancu and H. R. Faran, Foliations and Geometric Structures, Math. and Its Appl. 580, Springer, Dordrecht, 2006.
[2] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics. 509, Springer-Verlag, Berlin-New York, 1976.
[3] D. E. Blair and J. A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publications Matematiques,
34 (1990), 199-207.
[4] D. Chinea and C. Gonzales, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl., 156 (1990), 15-36.
[5] U. C. De and M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J., 43 (2003), 247-255.
[6] A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123 (1980), 35-58.
[7] S. Ianus¸, Some almost product structures on manifolds with linear connection, Kodai Math. Sem. Rep., 23 (1971), 305-310.
[8] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J., 4 (1981), 1-27.
[9] A. Kazan and H. B. Karada˜g, Trans-Sasakian manifolds with Schouten-van Kampen Connection, Ilirias Journal of Mathematics, 7 (2018), 1-12.
[10] J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl., 162 (1992), 77-86.
[11] J. C. Marrero and D. Chinea, On trans-Sasakian manifolds, in Proceedings of the XIVth Spanish-Portuguese Conference on Mathematics, Vol. 1, 1989.
[12] J. A. Oubina, New classes of almost contact metric structures, Publ. Mat. Debrecen, 32(1985), 187-193.
[13] Z. Olszak, The Schouten-van Kampen affine connection adapted an almost (para) contact metric structure, Publ. De L’inst. Math., 94 (2013), 31-42.
[14] J. Schouten and E. van Kampen, Zur Einbettungs-und Kr¨ummungsthorie nichtholonomer Gebilde, Math. Ann., 103 (1930), 752-783.
[15] A. F. Solov’ev, On the curvature of the connection induced on a hyperdistribution in a Riemannian space, Geom. Sb., 19 (1978), 12-23.
[16] A. F. Solov’ev, The bending of hyperdistributions, Geom. Sb., 20 (1979), 101-112.
[17] A. F. Solov’ev, Second fundamental form of a distribution, Mathematical notes of the Academy of Sciences of the USSR, 31 (1982), 71-75.
[18] A. F. Solov’ev, Curvature of a distribution, Mathematical notes of the Academy of Sciences of the USSR, 35 (1984), 61-68.
[19] A. Yıldız, f-Kenmotsu manifolds with the Schouten-van Kampen connection, Publ. de I’Inst. Math., 102 (2017), 93-105.
On Trans-Sasakian Manifolds with the Schouten-van Kampen Connection
Year 2020,
Volume: 8 Issue: 1, 152 - 157, 15.04.2020
[1] A. Bejancu and H. R. Faran, Foliations and Geometric Structures, Math. and Its Appl. 580, Springer, Dordrecht, 2006.
[2] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics. 509, Springer-Verlag, Berlin-New York, 1976.
[3] D. E. Blair and J. A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publications Matematiques,
34 (1990), 199-207.
[4] D. Chinea and C. Gonzales, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl., 156 (1990), 15-36.
[5] U. C. De and M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J., 43 (2003), 247-255.
[6] A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123 (1980), 35-58.
[7] S. Ianus¸, Some almost product structures on manifolds with linear connection, Kodai Math. Sem. Rep., 23 (1971), 305-310.
[8] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J., 4 (1981), 1-27.
[9] A. Kazan and H. B. Karada˜g, Trans-Sasakian manifolds with Schouten-van Kampen Connection, Ilirias Journal of Mathematics, 7 (2018), 1-12.
[10] J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl., 162 (1992), 77-86.
[11] J. C. Marrero and D. Chinea, On trans-Sasakian manifolds, in Proceedings of the XIVth Spanish-Portuguese Conference on Mathematics, Vol. 1, 1989.
[12] J. A. Oubina, New classes of almost contact metric structures, Publ. Mat. Debrecen, 32(1985), 187-193.
[13] Z. Olszak, The Schouten-van Kampen affine connection adapted an almost (para) contact metric structure, Publ. De L’inst. Math., 94 (2013), 31-42.
[14] J. Schouten and E. van Kampen, Zur Einbettungs-und Kr¨ummungsthorie nichtholonomer Gebilde, Math. Ann., 103 (1930), 752-783.
[15] A. F. Solov’ev, On the curvature of the connection induced on a hyperdistribution in a Riemannian space, Geom. Sb., 19 (1978), 12-23.
[16] A. F. Solov’ev, The bending of hyperdistributions, Geom. Sb., 20 (1979), 101-112.
[17] A. F. Solov’ev, Second fundamental form of a distribution, Mathematical notes of the Academy of Sciences of the USSR, 31 (1982), 71-75.
[18] A. F. Solov’ev, Curvature of a distribution, Mathematical notes of the Academy of Sciences of the USSR, 35 (1984), 61-68.
[19] A. Yıldız, f-Kenmotsu manifolds with the Schouten-van Kampen connection, Publ. de I’Inst. Math., 102 (2017), 93-105.
Zeren, S., & Yıldız, A. (2020). On Trans-Sasakian Manifolds with the Schouten-van Kampen Connection. Konuralp Journal of Mathematics, 8(1), 152-157.
AMA
Zeren S, Yıldız A. On Trans-Sasakian Manifolds with the Schouten-van Kampen Connection. Konuralp J. Math. April 2020;8(1):152-157.
Chicago
Zeren, Semra, and Ahmet Yıldız. “On Trans-Sasakian Manifolds With the Schouten-Van Kampen Connection”. Konuralp Journal of Mathematics 8, no. 1 (April 2020): 152-57.
EndNote
Zeren S, Yıldız A (April 1, 2020) On Trans-Sasakian Manifolds with the Schouten-van Kampen Connection. Konuralp Journal of Mathematics 8 1 152–157.
IEEE
S. Zeren and A. Yıldız, “On Trans-Sasakian Manifolds with the Schouten-van Kampen Connection”, Konuralp J. Math., vol. 8, no. 1, pp. 152–157, 2020.
ISNAD
Zeren, Semra - Yıldız, Ahmet. “On Trans-Sasakian Manifolds With the Schouten-Van Kampen Connection”. Konuralp Journal of Mathematics 8/1 (April 2020), 152-157.
JAMA
Zeren S, Yıldız A. On Trans-Sasakian Manifolds with the Schouten-van Kampen Connection. Konuralp J. Math. 2020;8:152–157.
MLA
Zeren, Semra and Ahmet Yıldız. “On Trans-Sasakian Manifolds With the Schouten-Van Kampen Connection”. Konuralp Journal of Mathematics, vol. 8, no. 1, 2020, pp. 152-7.
Vancouver
Zeren S, Yıldız A. On Trans-Sasakian Manifolds with the Schouten-van Kampen Connection. Konuralp J. Math. 2020;8(1):152-7.