Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 8 Sayı: 1, 197 - 206, 15.04.2020

Öz

Kaynakça

  • [1] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, JIPAM, 10(3) (2009), 1–9.
  • [2] M. Bezziou, Z. Dahmani, M.Z. Sarikaya, New operators for fractional integration theory with some applications, J. Math. Extension, In press 2018.
  • [3] P.L. Chebyshev, Sur les expressions approximatives des integrales definis par les autres prises entre les memes limite. Proc. Math. Soc. Charkov, 2, (1882), 93–98.
  • [4] Z. Dahmani, L. Tabharit, On weighted Gr¨uss type inequalities via fractional integrals. Journal of Advanced Research in Pure Mathematics, 2(4) (2010), 31–38.
  • [5] Z. Dahmani, About some integral inequalities using Riemann-Liouville integrals. General Mathematics, 20(4) (2012), 63–69.
  • [6] Z. Dahmani, L. Tabharit, S. Taf: New generalizations of Gr¨uss inequality using Riemann-Liouville fractional integrals. Belletin of Mathematical Analysis and applications, 2 (3) (2010), 93–99.
  • [7] S.S. Dragomir: Some integral inequalities of Gr¨uss type,Indian J. Pure Appl. Math. 31 (2002), 397–415.
  • [8] M. Houas, Z. Dahmani: Random variable inequalities involving (k; s)􀀀integration. Malaya J. Mat., 5(4) (2017), 641–646.
  • [9] P. Kumar: Inequality involving moments of a continuous random variable defined over a finite interval, Computers and Mathematics with Applications, 48 (2004), 257–273.
  • [10] M. Z. Sarikaya, H. Yaldiz: New generalization fractional inequalities of Ostrowski-Gr¨uss type. Lobachevskii Journal of Mathematics, 34(4) (2013), 326–331.
  • [11] M. Z. Sarikaya, N. Aktan, H. Yildirim: On weighted Chebyshev-Gr¨uss like inequalities on time scales. J. Math. Inequal, 2(2) (2008), 185–195.
  • [12] E. Set, M. Tomar and M.Z. Sarikaya: On generalization Gr¨uss type inequalities for k􀀀fractional integrals. Applied Mthematics and Computation, 269 (2015), 29–34.

Applications of the (k,s,h)-Riemann-Liouville and (k,h)-Hadamard Fractional Operators on Inequalities

Yıl 2020, Cilt: 8 Sayı: 1, 197 - 206, 15.04.2020

Öz

This paper deals with some results of fractional inequalities involving two recent recent integral operators: the $\left( k,s,h\right) -$Riemann-Liouville integral and the $\left( k,h\right)-$Hadamard fractional operator. We generalize some classical integral inequalities as well as some other fractional inequalities. By simple arguments, we establish a relation between the two considered operators that allows us to establish several integral results.

Kaynakça

  • [1] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, JIPAM, 10(3) (2009), 1–9.
  • [2] M. Bezziou, Z. Dahmani, M.Z. Sarikaya, New operators for fractional integration theory with some applications, J. Math. Extension, In press 2018.
  • [3] P.L. Chebyshev, Sur les expressions approximatives des integrales definis par les autres prises entre les memes limite. Proc. Math. Soc. Charkov, 2, (1882), 93–98.
  • [4] Z. Dahmani, L. Tabharit, On weighted Gr¨uss type inequalities via fractional integrals. Journal of Advanced Research in Pure Mathematics, 2(4) (2010), 31–38.
  • [5] Z. Dahmani, About some integral inequalities using Riemann-Liouville integrals. General Mathematics, 20(4) (2012), 63–69.
  • [6] Z. Dahmani, L. Tabharit, S. Taf: New generalizations of Gr¨uss inequality using Riemann-Liouville fractional integrals. Belletin of Mathematical Analysis and applications, 2 (3) (2010), 93–99.
  • [7] S.S. Dragomir: Some integral inequalities of Gr¨uss type,Indian J. Pure Appl. Math. 31 (2002), 397–415.
  • [8] M. Houas, Z. Dahmani: Random variable inequalities involving (k; s)􀀀integration. Malaya J. Mat., 5(4) (2017), 641–646.
  • [9] P. Kumar: Inequality involving moments of a continuous random variable defined over a finite interval, Computers and Mathematics with Applications, 48 (2004), 257–273.
  • [10] M. Z. Sarikaya, H. Yaldiz: New generalization fractional inequalities of Ostrowski-Gr¨uss type. Lobachevskii Journal of Mathematics, 34(4) (2013), 326–331.
  • [11] M. Z. Sarikaya, N. Aktan, H. Yildirim: On weighted Chebyshev-Gr¨uss like inequalities on time scales. J. Math. Inequal, 2(2) (2008), 185–195.
  • [12] E. Set, M. Tomar and M.Z. Sarikaya: On generalization Gr¨uss type inequalities for k􀀀fractional integrals. Applied Mthematics and Computation, 269 (2015), 29–34.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Mohamed Bezzıou Bu kişi benim

Zoubir Dahmani

Mehmet Eyüp Kiriş

Yayımlanma Tarihi 15 Nisan 2020
Gönderilme Tarihi 17 Aralık 2019
Kabul Tarihi 17 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 1

Kaynak Göster

APA Bezzıou, M., Dahmani, Z., & Kiriş, M. E. (2020). Applications of the (k,s,h)-Riemann-Liouville and (k,h)-Hadamard Fractional Operators on Inequalities. Konuralp Journal of Mathematics, 8(1), 197-206.
AMA Bezzıou M, Dahmani Z, Kiriş ME. Applications of the (k,s,h)-Riemann-Liouville and (k,h)-Hadamard Fractional Operators on Inequalities. Konuralp J. Math. Nisan 2020;8(1):197-206.
Chicago Bezzıou, Mohamed, Zoubir Dahmani, ve Mehmet Eyüp Kiriş. “Applications of the (k,s,h)-Riemann-Liouville and (k,h)-Hadamard Fractional Operators on Inequalities”. Konuralp Journal of Mathematics 8, sy. 1 (Nisan 2020): 197-206.
EndNote Bezzıou M, Dahmani Z, Kiriş ME (01 Nisan 2020) Applications of the (k,s,h)-Riemann-Liouville and (k,h)-Hadamard Fractional Operators on Inequalities. Konuralp Journal of Mathematics 8 1 197–206.
IEEE M. Bezzıou, Z. Dahmani, ve M. E. Kiriş, “Applications of the (k,s,h)-Riemann-Liouville and (k,h)-Hadamard Fractional Operators on Inequalities”, Konuralp J. Math., c. 8, sy. 1, ss. 197–206, 2020.
ISNAD Bezzıou, Mohamed vd. “Applications of the (k,s,h)-Riemann-Liouville and (k,h)-Hadamard Fractional Operators on Inequalities”. Konuralp Journal of Mathematics 8/1 (Nisan 2020), 197-206.
JAMA Bezzıou M, Dahmani Z, Kiriş ME. Applications of the (k,s,h)-Riemann-Liouville and (k,h)-Hadamard Fractional Operators on Inequalities. Konuralp J. Math. 2020;8:197–206.
MLA Bezzıou, Mohamed vd. “Applications of the (k,s,h)-Riemann-Liouville and (k,h)-Hadamard Fractional Operators on Inequalities”. Konuralp Journal of Mathematics, c. 8, sy. 1, 2020, ss. 197-06.
Vancouver Bezzıou M, Dahmani Z, Kiriş ME. Applications of the (k,s,h)-Riemann-Liouville and (k,h)-Hadamard Fractional Operators on Inequalities. Konuralp J. Math. 2020;8(1):197-206.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.