Research Article
BibTex RIS Cite
Year 2020, Volume: 8 Issue: 2, 223 - 228, 27.10.2020

Abstract

References

  • [1] A. E. Hamza, A. M. Ahmed and A. M. Youssef, On the recursive sequence $x_{n+1}=(a+bx_{n})/(A+Bx_{n-1}^{k})$, Arab Journal of Mathematical Sciences., 17(2011), 31-44.
  • [2] A. Khaliq and E. M. Elsayed, Qualitative study of a higher order rational difference equation, Hacettepe Journal of Mathematics and Statistics, 47(5)(2018), 1128-1143.
  • [3] A. Q. Khan, Q. Din, M. N. Qureshi and T F. Ibrahim, Global behavior of an anti-competive system of fourth-order rational difference equations, Computational Ecology and Software, 4(1)(2014), 35-46.
  • [4] D. T. Tollu, Y. Yazlik and N. Taskara, On a solvable nonlinear difference equation of higher order, Turkish Journal of Mathematics, 42(4)(2018), 1765-1778.
  • [5] D. T. Tollu and I. Yalcinkaya, Global behavior of a three-dimensional system of difference equations of order three, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 681(2019), 1-16.
  • [6] E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Advances in Discrete Mathematics and Applications, Volume 4, Chapman and Hall, CRS Press, 2005.
  • [7] E. M. Elabbasy and S. M Elaissawy, Global behavior of a higher-order rational difference equation, Fasciculi Mathematici, 53(2014), 39-52.
  • [8] E. M. Elsayed, On the dynamics of a higher-order rational recursive sequence, Communications in Mathematical Analysis, 12(2012), 117-133.
  • [9] E. M. Elsayed and T. F. Ibrahim, Solutions and periodicity of a rational recursive sequences of order five, Bulletin of the Malaysian Mathematical Sciences Society, 38(2015), 95-112.
  • [10] F. Belhannache, N. Touafek and R. Abo-Zeid, Dynamics of a third-order rational difference equation, Bulletin Mathematique de la Societe des Sciences Math´ematiques de Roumanie, 59(1)(2016), 13-22.
  • [11] F. Belhannache, N. Touafek and R. Abo-Zeid, On a higher order rational difference equation, Journal of Applied Mathematics and Informatics, 5-6(34)(2016), 369-382.
  • [12] I. Okumus and Y. Soykan, On the solutions of four rational difference equations associated to tribonacci numbers, Konuralp Journal of Mathematics, 8(1)(2020), 79-90.
  • [13] M. E. Erdogan and C. Cinar, On the dynamics of the recursive sequence $x_{n+1}=\alpha x_{n-1}/(\beta +\gamma \Sigma _{k=1}^{t}x_{n-2k}^{p}\prod_{k=1}^{t}x_{n-2k}^{q})$, Fasciculi Mathematici, 50(2013), 59-66.
  • [14] M. Gümüş¸ and Ö . Öcalan, Global asymptotic stability of a nonautonomous difference equation, Journal of Applied Mathematics, Article ID 395954, (2014), 5 pages.
  • [15] M. Gümüş, R. Abo-Zeid and Ö . Öcalan, Dynamical behavior of a third-order difference equation with arbitrary powers, Kyungpook Mathematical Journal, 57(2017), 251-263.
  • [16] M. Gümüş¸ and Y. Soykan, The dynamics of positive solutions of a higher order fractional difference equation with arbitrary powers, Journal of Applied Mathematics and Informatics, 35(2017), 267-276.
  • [17] M. Gümüş and R. Abo-Zeid, On the solutions of a (2k+2)th order difference equation, Dynamics of Continuous Discrete and Impulsive Systems Series B: Applications & Algorithms, 25(2018), 129-143.
  • [18] M. Shojaei, R. Saadati and H. Adbi, Stability and periodic character of a rational third order difference equation, Chaos Solitons and Fractals 39(2009), 1203-1209.
  • [19] M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman and Hall, CRC Press, 2001.
  • [20] Q. Din, T. F. Ibrahim and K. A. Khan, Behavior of a competitive system of second-order difference equations, The Scientific World Journal, ID 283982, (2014), 9 pages.
  • [21] R. Abo-Zeid, Global behavior of a higher order difference equation, Mathematica Slovaca, 64(4)(2014), 931-940.
  • [22] S. Elaydi, An Introduction to Difference Equations, Springer, New York, 1999.
  • [23] T. F. Ibrahim, Periodicity and global attractivity of difference equation of higher order, Journal of Computational Analysis and Applications, 16(3)(2014), 552-564.
  • [24] V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
  • [25] Y. Yazlik, D. T. Tollu and N. Taskara, On the behaviour of solutions for some systems of difference equations, Journal of Computational Analysis and Applications, 18(1)(2015), 166-178.
  • [26] Y. Yazlik, D. T. Tollu and N. Taskara, Behaviour of solutions for a system of two higher-order difference equations, Journal of Science and Arts, 4(45)(2018), 813-826.

On Dynamics of A Higher-Order Rational Difference Equation

Year 2020, Volume: 8 Issue: 2, 223 - 228, 27.10.2020

Abstract

In this paper, we study the dynamical behavior of the positive solutions of the difference equation $ y_{n+1}=\frac{A+By_{n}}{C+D\prod_{i=1}^{k}y_{n-i}^{q_{i}}},\ n\in \mathbb{N}_{0} $ where $\mathbb{N}_{0}=\mathbb{N} \cup \left\{ 0\right\} $, the initial conditions and the parameters $A,$ $B$ are non-negative real numbers, the parameters $C$, $D$\ are positive real numbers, $q_{i}$ for $i\in \{1,2,...k\}$ are fixed positive integers and $% 1\leq k$.                                                                                

References

  • [1] A. E. Hamza, A. M. Ahmed and A. M. Youssef, On the recursive sequence $x_{n+1}=(a+bx_{n})/(A+Bx_{n-1}^{k})$, Arab Journal of Mathematical Sciences., 17(2011), 31-44.
  • [2] A. Khaliq and E. M. Elsayed, Qualitative study of a higher order rational difference equation, Hacettepe Journal of Mathematics and Statistics, 47(5)(2018), 1128-1143.
  • [3] A. Q. Khan, Q. Din, M. N. Qureshi and T F. Ibrahim, Global behavior of an anti-competive system of fourth-order rational difference equations, Computational Ecology and Software, 4(1)(2014), 35-46.
  • [4] D. T. Tollu, Y. Yazlik and N. Taskara, On a solvable nonlinear difference equation of higher order, Turkish Journal of Mathematics, 42(4)(2018), 1765-1778.
  • [5] D. T. Tollu and I. Yalcinkaya, Global behavior of a three-dimensional system of difference equations of order three, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 681(2019), 1-16.
  • [6] E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Advances in Discrete Mathematics and Applications, Volume 4, Chapman and Hall, CRS Press, 2005.
  • [7] E. M. Elabbasy and S. M Elaissawy, Global behavior of a higher-order rational difference equation, Fasciculi Mathematici, 53(2014), 39-52.
  • [8] E. M. Elsayed, On the dynamics of a higher-order rational recursive sequence, Communications in Mathematical Analysis, 12(2012), 117-133.
  • [9] E. M. Elsayed and T. F. Ibrahim, Solutions and periodicity of a rational recursive sequences of order five, Bulletin of the Malaysian Mathematical Sciences Society, 38(2015), 95-112.
  • [10] F. Belhannache, N. Touafek and R. Abo-Zeid, Dynamics of a third-order rational difference equation, Bulletin Mathematique de la Societe des Sciences Math´ematiques de Roumanie, 59(1)(2016), 13-22.
  • [11] F. Belhannache, N. Touafek and R. Abo-Zeid, On a higher order rational difference equation, Journal of Applied Mathematics and Informatics, 5-6(34)(2016), 369-382.
  • [12] I. Okumus and Y. Soykan, On the solutions of four rational difference equations associated to tribonacci numbers, Konuralp Journal of Mathematics, 8(1)(2020), 79-90.
  • [13] M. E. Erdogan and C. Cinar, On the dynamics of the recursive sequence $x_{n+1}=\alpha x_{n-1}/(\beta +\gamma \Sigma _{k=1}^{t}x_{n-2k}^{p}\prod_{k=1}^{t}x_{n-2k}^{q})$, Fasciculi Mathematici, 50(2013), 59-66.
  • [14] M. Gümüş¸ and Ö . Öcalan, Global asymptotic stability of a nonautonomous difference equation, Journal of Applied Mathematics, Article ID 395954, (2014), 5 pages.
  • [15] M. Gümüş, R. Abo-Zeid and Ö . Öcalan, Dynamical behavior of a third-order difference equation with arbitrary powers, Kyungpook Mathematical Journal, 57(2017), 251-263.
  • [16] M. Gümüş¸ and Y. Soykan, The dynamics of positive solutions of a higher order fractional difference equation with arbitrary powers, Journal of Applied Mathematics and Informatics, 35(2017), 267-276.
  • [17] M. Gümüş and R. Abo-Zeid, On the solutions of a (2k+2)th order difference equation, Dynamics of Continuous Discrete and Impulsive Systems Series B: Applications & Algorithms, 25(2018), 129-143.
  • [18] M. Shojaei, R. Saadati and H. Adbi, Stability and periodic character of a rational third order difference equation, Chaos Solitons and Fractals 39(2009), 1203-1209.
  • [19] M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman and Hall, CRC Press, 2001.
  • [20] Q. Din, T. F. Ibrahim and K. A. Khan, Behavior of a competitive system of second-order difference equations, The Scientific World Journal, ID 283982, (2014), 9 pages.
  • [21] R. Abo-Zeid, Global behavior of a higher order difference equation, Mathematica Slovaca, 64(4)(2014), 931-940.
  • [22] S. Elaydi, An Introduction to Difference Equations, Springer, New York, 1999.
  • [23] T. F. Ibrahim, Periodicity and global attractivity of difference equation of higher order, Journal of Computational Analysis and Applications, 16(3)(2014), 552-564.
  • [24] V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
  • [25] Y. Yazlik, D. T. Tollu and N. Taskara, On the behaviour of solutions for some systems of difference equations, Journal of Computational Analysis and Applications, 18(1)(2015), 166-178.
  • [26] Y. Yazlik, D. T. Tollu and N. Taskara, Behaviour of solutions for a system of two higher-order difference equations, Journal of Science and Arts, 4(45)(2018), 813-826.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Memiş Güler This is me

İbrahim Yalçınkaya

Farida Belhannache

Publication Date October 27, 2020
Submission Date February 5, 2020
Acceptance Date October 13, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Güler, M., Yalçınkaya, İ., & Belhannache, F. (2020). On Dynamics of A Higher-Order Rational Difference Equation. Konuralp Journal of Mathematics, 8(2), 223-228.
AMA Güler M, Yalçınkaya İ, Belhannache F. On Dynamics of A Higher-Order Rational Difference Equation. Konuralp J. Math. October 2020;8(2):223-228.
Chicago Güler, Memiş, İbrahim Yalçınkaya, and Farida Belhannache. “On Dynamics of A Higher-Order Rational Difference Equation”. Konuralp Journal of Mathematics 8, no. 2 (October 2020): 223-28.
EndNote Güler M, Yalçınkaya İ, Belhannache F (October 1, 2020) On Dynamics of A Higher-Order Rational Difference Equation. Konuralp Journal of Mathematics 8 2 223–228.
IEEE M. Güler, İ. Yalçınkaya, and F. Belhannache, “On Dynamics of A Higher-Order Rational Difference Equation”, Konuralp J. Math., vol. 8, no. 2, pp. 223–228, 2020.
ISNAD Güler, Memiş et al. “On Dynamics of A Higher-Order Rational Difference Equation”. Konuralp Journal of Mathematics 8/2 (October 2020), 223-228.
JAMA Güler M, Yalçınkaya İ, Belhannache F. On Dynamics of A Higher-Order Rational Difference Equation. Konuralp J. Math. 2020;8:223–228.
MLA Güler, Memiş et al. “On Dynamics of A Higher-Order Rational Difference Equation”. Konuralp Journal of Mathematics, vol. 8, no. 2, 2020, pp. 223-8.
Vancouver Güler M, Yalçınkaya İ, Belhannache F. On Dynamics of A Higher-Order Rational Difference Equation. Konuralp J. Math. 2020;8(2):223-8.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.