Research Article
BibTex RIS Cite

On Connectedness via a G-method and a Hereditary Class

Year 2020, Volume: 8 Issue: 2, 370 - 375, 27.10.2020

Abstract

In 2003, Connor and Grosse-Erdmann [1] introduced the definition of $G$-method by using G-linear functions instead of limit, based on various types of convergence on real numbers. Later on, some mathematicians examined this concept in topological groups. Then new concepts, which were important in topology such as $G$-sequential compactness and $G$-sequential connected, were defined and some properties of those concepts are investigated. S. Lin and L. Liu defined $G$-method notion by taking any set instead of topological group in 2016. In this paper, we give definition of $cl_{G^{*}}$-closure which is more general than $G$-closure of a set with the help of hereditarily class. Then we define the notion of $\tau_{G^{*}}$-topology and give the concepts of $G^{*}$-connected and $G^{*}$-component. Besides, we examine the relationship between these concepts and previously given concepts.

Supporting Institution

Ege University Scientific Research Projects Coordination Unit.

Project Number

FYL-2020-21056

References

  • [1] J. Connor and K. Grose-Erdmann, Sequential definitions of continuty for real functions, Rocky Mt. 33(1) (2003) 93-126.
  • [2] A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hung. 96 (2002) 351-357.
  • [3] A. Csaszar, Modification of generalized topologies via hereditarly classes, Acta Math. Hung. 115(1-2) (2007) 29-36.
  • [4] H. Çakallı, Sequential definitions of compactness, App.Math.Lett. 21(6) (2008) 594-598.
  • [5] H. Çakallı, Sequential definitions of connectedness, Appl. Math. Lett. 25 (2012) 461-465.
  • [6] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
  • [7] P. Kostyrko, T. Salat, W. Wilczynski, I-convergence, Real Anal. Exchange, 26:2 (2000-2001), 669–686.
  • [8] K. Kuratowski, Topologie I, PWN, Warszawa, 1961.
  • [9] S. Lin, L. Liu , G-methods, G-sequential space and G- continuity in topological spaces, Topology App. 212 (2016), 29-48.
  • [10] L. Liu, G-neighborhoods in topological spaces, J. Minnan Normal Univ. Nat. Sci., 29(3) (2016) 1-6.
  • [11] L. Liu, G-derived sets and G-boundary, J. Yangzhou Univ. Nat. Sci., 20(1) (2017) 18-22.
  • [12] L. Liu, G-Kernel-Open Sets, G-Kernel-Neighborhoods and G-Kernel-Derived Sets, Journal of Mathematical Research with Appl. 38(3), (2018) 276-286.
  • [13] G. Di. Maio, And Lj D. R. Kocinac., Statistical convergence in topology, Topology Appl., 156(1) (2008), 28-45.
  • [14] O. Mucuk and T. Sahan, On G-sequental continuity,28(6) (2014) Filomat, 1181-1189.
  • [15] B. Schweizer and A. Sklar, Statistical Metric Spaces , Pacific J. Maths., 10 (1960), 313-334.
  • [16] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-34.
  • [17] Z. Tang and F. Lin, Statistical versions of sequential and Fr˘echet-Urysohn spaces., Adv. Math. (China) 44(6) (2015), 945-954.
  • [18] Y. Wu and F. Lin, The G-connected property and G-topological groups, 33(14) (2019) Filomat, 4441-4450.
  • [19] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, New York.
Year 2020, Volume: 8 Issue: 2, 370 - 375, 27.10.2020

Abstract

Project Number

FYL-2020-21056

References

  • [1] J. Connor and K. Grose-Erdmann, Sequential definitions of continuty for real functions, Rocky Mt. 33(1) (2003) 93-126.
  • [2] A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hung. 96 (2002) 351-357.
  • [3] A. Csaszar, Modification of generalized topologies via hereditarly classes, Acta Math. Hung. 115(1-2) (2007) 29-36.
  • [4] H. Çakallı, Sequential definitions of compactness, App.Math.Lett. 21(6) (2008) 594-598.
  • [5] H. Çakallı, Sequential definitions of connectedness, Appl. Math. Lett. 25 (2012) 461-465.
  • [6] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
  • [7] P. Kostyrko, T. Salat, W. Wilczynski, I-convergence, Real Anal. Exchange, 26:2 (2000-2001), 669–686.
  • [8] K. Kuratowski, Topologie I, PWN, Warszawa, 1961.
  • [9] S. Lin, L. Liu , G-methods, G-sequential space and G- continuity in topological spaces, Topology App. 212 (2016), 29-48.
  • [10] L. Liu, G-neighborhoods in topological spaces, J. Minnan Normal Univ. Nat. Sci., 29(3) (2016) 1-6.
  • [11] L. Liu, G-derived sets and G-boundary, J. Yangzhou Univ. Nat. Sci., 20(1) (2017) 18-22.
  • [12] L. Liu, G-Kernel-Open Sets, G-Kernel-Neighborhoods and G-Kernel-Derived Sets, Journal of Mathematical Research with Appl. 38(3), (2018) 276-286.
  • [13] G. Di. Maio, And Lj D. R. Kocinac., Statistical convergence in topology, Topology Appl., 156(1) (2008), 28-45.
  • [14] O. Mucuk and T. Sahan, On G-sequental continuity,28(6) (2014) Filomat, 1181-1189.
  • [15] B. Schweizer and A. Sklar, Statistical Metric Spaces , Pacific J. Maths., 10 (1960), 313-334.
  • [16] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-34.
  • [17] Z. Tang and F. Lin, Statistical versions of sequential and Fr˘echet-Urysohn spaces., Adv. Math. (China) 44(6) (2015), 945-954.
  • [18] Y. Wu and F. Lin, The G-connected property and G-topological groups, 33(14) (2019) Filomat, 4441-4450.
  • [19] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, New York.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Faruk Gürcan This is me

Ayşegül Çaksu Güler

Project Number FYL-2020-21056
Publication Date October 27, 2020
Submission Date September 8, 2020
Acceptance Date October 19, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Gürcan, F., & Çaksu Güler, A. (2020). On Connectedness via a G-method and a Hereditary Class. Konuralp Journal of Mathematics, 8(2), 370-375.
AMA Gürcan F, Çaksu Güler A. On Connectedness via a G-method and a Hereditary Class. Konuralp J. Math. October 2020;8(2):370-375.
Chicago Gürcan, Faruk, and Ayşegül Çaksu Güler. “On Connectedness via a G-Method and a Hereditary Class”. Konuralp Journal of Mathematics 8, no. 2 (October 2020): 370-75.
EndNote Gürcan F, Çaksu Güler A (October 1, 2020) On Connectedness via a G-method and a Hereditary Class. Konuralp Journal of Mathematics 8 2 370–375.
IEEE F. Gürcan and A. Çaksu Güler, “On Connectedness via a G-method and a Hereditary Class”, Konuralp J. Math., vol. 8, no. 2, pp. 370–375, 2020.
ISNAD Gürcan, Faruk - Çaksu Güler, Ayşegül. “On Connectedness via a G-Method and a Hereditary Class”. Konuralp Journal of Mathematics 8/2 (October 2020), 370-375.
JAMA Gürcan F, Çaksu Güler A. On Connectedness via a G-method and a Hereditary Class. Konuralp J. Math. 2020;8:370–375.
MLA Gürcan, Faruk and Ayşegül Çaksu Güler. “On Connectedness via a G-Method and a Hereditary Class”. Konuralp Journal of Mathematics, vol. 8, no. 2, 2020, pp. 370-5.
Vancouver Gürcan F, Çaksu Güler A. On Connectedness via a G-method and a Hereditary Class. Konuralp J. Math. 2020;8(2):370-5.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.