Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 8 Sayı: 2, 391 - 409, 27.10.2020

Öz

Kaynakça

  • [1] Bernal, L., Crecimiento relativo de funciones enteras. Contribuci´on al estudio de lasfunciones enteras conındice exponencial finito, Doctoral Dissertation, University of Seville, Spain, 1984.
  • [2] Bernal, L., Orden relativo de crecimiento de funciones enteras, Collect. Math. Vol:39, (1988), 209-229.
  • [3] Biswas, T., Some study on slowly changing function based relative growth of meromorphic function in the unit disc, Konuralp J. Math. Vol:7, No.1 (2019), 146-167
  • [4] Fenton, P. C. and Rossi, J., ODEs and Wiman–Valiron theory in the unit disc, J. Math. Anal. Appl., Vol:367 (2010), 137-145.
  • [5] Girnyk, M. A., On the inverse problem of the theory of the distribution of values for functions that are analytic in the unit disc, (Russian) Ukrain. Mat. ˇ Z., Vol:29, No.1 (1977), 32-39.
  • [6] Hayman, W. K., Meromorphic Functions,Oxford Mathematical Monographs. Clarendon Press, Oxford (1964).
  • [7] Juneja, O. P. and Kapoor, G. P., Analytic functions-growth aspects. Research Notes in Mathematics 104, Pitman Adv. Publ. Prog., Boston-London- Melbourne (1985).
  • [8] Kapoor, G. P. and Gopal, K., Decomposition theorems for analytic functions having slow rates of growth in a finite disc. J. Math. Anal. Appl. Vol:74 (1980), 446-455.
  • [9] Laine, I., Complex differential equations. Handbook of differential equations: ordinary differential equations, Vol: IV, 269-363, Handb. Differ. Equ., Amsterdam: Elsevier/North-Holland, 2008.
  • [10] Li, Y. Z., On the growth of the solution of two-order differential equations in the unit disc, Pure Appl. Math., Vol: 4 (2002), 295-300.
  • [11] Nicholls, P. J. and Sons, L. R., Minimum modulus and zeros of functions in the unit disc. Proc. Lond.Math. Soc., Vol:31, No.3 (1975), 99-113.
  • [12] Sons, L. R., Unbounded functions in the unit disc, Internat. J. Math. & Math. Sci., Vol:6, No.2 (1983), 201-242.
  • [13] Tsuji, M., Potential Theory in Modern Function Theory. Chelsea, New York, (1975), reprint of the 1959 edition.

A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function with Respect to an Entire Function in the Unit Disc

Yıl 2020, Cilt: 8 Sayı: 2, 391 - 409, 27.10.2020

Öz

In this paper we introduce the idea of generalized relative order $(\alpha ,\beta )$ and generalized relative type $(\alpha ,\beta )$\ of a meromorphic function with respect to an analytic function in the unit disc $D$ where $\alpha $ and $\beta $ are continuous non-negative on $(-\infty ,+\infty )$ functions. Hence we study some basic properties relating to the sum and product theorems of generalized relative order $(\alpha ,\beta )$ and generalized relative type $(\alpha ,\beta )$\ of a meromorphic function with respect to an analytic function in the unit disc $D$.

Kaynakça

  • [1] Bernal, L., Crecimiento relativo de funciones enteras. Contribuci´on al estudio de lasfunciones enteras conındice exponencial finito, Doctoral Dissertation, University of Seville, Spain, 1984.
  • [2] Bernal, L., Orden relativo de crecimiento de funciones enteras, Collect. Math. Vol:39, (1988), 209-229.
  • [3] Biswas, T., Some study on slowly changing function based relative growth of meromorphic function in the unit disc, Konuralp J. Math. Vol:7, No.1 (2019), 146-167
  • [4] Fenton, P. C. and Rossi, J., ODEs and Wiman–Valiron theory in the unit disc, J. Math. Anal. Appl., Vol:367 (2010), 137-145.
  • [5] Girnyk, M. A., On the inverse problem of the theory of the distribution of values for functions that are analytic in the unit disc, (Russian) Ukrain. Mat. ˇ Z., Vol:29, No.1 (1977), 32-39.
  • [6] Hayman, W. K., Meromorphic Functions,Oxford Mathematical Monographs. Clarendon Press, Oxford (1964).
  • [7] Juneja, O. P. and Kapoor, G. P., Analytic functions-growth aspects. Research Notes in Mathematics 104, Pitman Adv. Publ. Prog., Boston-London- Melbourne (1985).
  • [8] Kapoor, G. P. and Gopal, K., Decomposition theorems for analytic functions having slow rates of growth in a finite disc. J. Math. Anal. Appl. Vol:74 (1980), 446-455.
  • [9] Laine, I., Complex differential equations. Handbook of differential equations: ordinary differential equations, Vol: IV, 269-363, Handb. Differ. Equ., Amsterdam: Elsevier/North-Holland, 2008.
  • [10] Li, Y. Z., On the growth of the solution of two-order differential equations in the unit disc, Pure Appl. Math., Vol: 4 (2002), 295-300.
  • [11] Nicholls, P. J. and Sons, L. R., Minimum modulus and zeros of functions in the unit disc. Proc. Lond.Math. Soc., Vol:31, No.3 (1975), 99-113.
  • [12] Sons, L. R., Unbounded functions in the unit disc, Internat. J. Math. & Math. Sci., Vol:6, No.2 (1983), 201-242.
  • [13] Tsuji, M., Potential Theory in Modern Function Theory. Chelsea, New York, (1975), reprint of the 1959 edition.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Tanmay Biswas

Chinmay Bıswas

Yayımlanma Tarihi 27 Ekim 2020
Gönderilme Tarihi 18 Eylül 2020
Kabul Tarihi 9 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 2

Kaynak Göster

APA Biswas, T., & Bıswas, C. (2020). A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function with Respect to an Entire Function in the Unit Disc. Konuralp Journal of Mathematics, 8(2), 391-409.
AMA Biswas T, Bıswas C. A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function with Respect to an Entire Function in the Unit Disc. Konuralp J. Math. Ekim 2020;8(2):391-409.
Chicago Biswas, Tanmay, ve Chinmay Bıswas. “A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function With Respect to an Entire Function in the Unit Disc”. Konuralp Journal of Mathematics 8, sy. 2 (Ekim 2020): 391-409.
EndNote Biswas T, Bıswas C (01 Ekim 2020) A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function with Respect to an Entire Function in the Unit Disc. Konuralp Journal of Mathematics 8 2 391–409.
IEEE T. Biswas ve C. Bıswas, “A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function with Respect to an Entire Function in the Unit Disc”, Konuralp J. Math., c. 8, sy. 2, ss. 391–409, 2020.
ISNAD Biswas, Tanmay - Bıswas, Chinmay. “A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function With Respect to an Entire Function in the Unit Disc”. Konuralp Journal of Mathematics 8/2 (Ekim 2020), 391-409.
JAMA Biswas T, Bıswas C. A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function with Respect to an Entire Function in the Unit Disc. Konuralp J. Math. 2020;8:391–409.
MLA Biswas, Tanmay ve Chinmay Bıswas. “A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function With Respect to an Entire Function in the Unit Disc”. Konuralp Journal of Mathematics, c. 8, sy. 2, 2020, ss. 391-09.
Vancouver Biswas T, Bıswas C. A Note on Generalized Relative Order (α,β) and Generalized Relative Type (α,β) of a Meromorphic Function with Respect to an Entire Function in the Unit Disc. Konuralp J. Math. 2020;8(2):391-409.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.