Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 9 Sayı: 1, 119 - 126, 28.04.2021

Öz

Kaynakça

  • [1] R. Agarwal, D, O’Regan and S. Stanek, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations.J. Math. Anal. Appl., 371 (2010), 57–68.
  • [2] A. Babakhani and V. Gejji, Existence of positive solutions of nonlinear fractional differential equations.J. Math. Anal.Appl. 278, (2003), 434-442.
  • [3] C. Celik and M. Duman, Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231 (2012) 1743–1750.
  • [4] F. Chen, A. Chen and X. Wu, Anti-periodic boundary value problems with Riesz-Caputo derivative. Adv. Difference Equ. 2019 (2019), 119.
  • [5] Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations . Appl. Math. Lett. 51 (2016), 48–54.
  • [6] M.Darwish and S. Ntouyas, On initial and boundary value problems for fractional order mixed type functional differential inclusion. Comput. Math. Appl. 59 (2010), 1253–1265.
  • [7] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini and P. Paradisi, Discrete random walk models for space–time fractional diffusion. Chem. Phys. 284 (2012), 521–541.
  • [8] C. Gu and G. Wu, Positive solutions of fractional differential equations with the Riesz space derivative. Appl. Math. Lett. 95 (2019), 59–64.
  • [9] L. Guo, L. Liu and W. Ye, Uniqueness of iterative positive solutions for the singular fractional differential equations with integral boundary conditions. Comput. Math. Appl. 59(8) (2010), 2601–2609.
  • [10] A. Kilbas, H.H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204.North–Holland mathematics studies,Elsevier, Amsterdam, 2006.
  • [11] M. Klimek, Stationarity-conservation laws for fractional differential equations with variable coefficients. J. Phys. A 35(31) (2002), 6675- 6693.
  • [12] G. Li and H. Liu, Stability analysis and synchronization for a class of fractional-order neural networks, Entropy, 55 (18) (2016), p. 13.
  • [13] K. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations. John Wiley, NY,1993.
  • [14] G. NGereekata, A Cauchy problem for for some fractional abstract differential equations with fractional order with nonlocal conditions. Nonlinear Anal. 70 (2009), 1873–1876.
  • [15] T. Odzijewicz, A.B. Malinowska and D.F.M. Torres, A generalized fractional calculus of variations Control Cybernet., 2 (42) (2013), pp. 443-458.
  • [16] C. Pinto and A.R.M. Carvalho, New findings on the dynamics of HIV and TB coinfection models, Appl. Math. Comput. (242) (2014), pp. 36-46.
  • [17] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, CA, 1999.
  • [18] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calculus Appl. Anal. 5 (2002), 367–386.
  • [19] B. Ross, S. G. Samko and E. R. Love, Functions that have no first order derivative might have fractional derivatives of all orders less than one. Real Anal. Exchange 20, No 1 (1994/95), 140–157.
  • [20] M. Z. Sarıkaya and F. Usta, On comparison theorems for conformable fractional differential equations, International Journal of Analysis and Applications, 2016, 12(2), 207-214.
  • [21] S. Shen, F. Liu and V. Anh, Numerical approximations and solution techniques for the Caputo-time Riesz–Caputo fractional advection–diffusion equation. Numer. Algorithms. 56 (2011), 383–403.
  • [22] Sierociuk, T. Skovranek, M. Macias, I. Podlubny, I. Petras, A. Dzielinski and P. Ziubinski, Diffusion process modeling by using fractional–order models, Appl. Math. Comput., 15 (257) (2015), pp. 2-11.
  • [23] H. Sun, S. Hu, Y. Chen, W. Chen and Z. Yu, A dynamic–order fractional dynamic system Chinese Phys. Lett., 30 (2013), Article 046601 pp.4.
  • [24] S.Toprakseven, Existence and uniqueness of solutions to anti-periodic Riezs-Caputo impulsive fractional boundary value problems,Tbilisi Mathematical Journal 14(1) (2021), pp. 71–82.
  • [25] S. Toprakseven, Existence and uniqueness of solutions to RieszCaputo impulsive fractional boundary value problems, Journal of Interdisciplinary Mathematics,DOI: 10.1080/09720502.2020.1826629, (2021).
  • [26] S. Toprakseven, Positive solutions for two-point conformable fractional differential equations by monotone iterative scheme, TWMS J. App. and Eng. Math. V.11, N.1, (2021), pp. 289-301.
  • [27] S. Toprakseven, The Existence and Uniqueness of Initial-Boundary Value Problems of the Fractional Caputo-Fabrizio Differential Equations, Universal Journal of Mathematics and Applications, 2 (2) (2019) 100-106.
  • [28] S. Toprakseven, The existence of positive solutions and a Lyapunov-type inequality for boundary value problems of the fractioanl Caputo-Fabrizio differential equations, Sigma J Eng. and Nat. Sci. 37 (4), (2019), 1125-1133.
  • [29] F. Usta, Numerical Analysis of Fractional Volterra Integral Equations via Bernstein Approximation Method, Journal of Computational and Applied Mathematics,384, 2021, 113198, https://doi.org/10.1016/j.cam.2020.113198
  • [30] F. Usta, Fractional type Poisson equations by Radial Basis Functions Kansa approach, Journal of Inequalities and Special Functions, 2016, 7(4), 143-149.
  • [31] F. Usta, Numerical solution of fractional elliptic PDE’s by the collocation method, Applications and Applied Mathematics: An International Journal, 2017, 12(1), 470- 478.
  • [32] F. Usta, H. Budak and M. Z. Sarıkaya, Yang-Laplace transform method Volterra and Abel’s integro-differential equations of fractional order, International Journal of Nonlinear Analysis and Applications, 9 (2018) No. 2, 203-214, http://dx.doi.org/10.22075/ijnaa.2018.13630.1709.
  • [33] F. Usta and M. Z. Sarıkaya, The Analytical Solution of Van der Pol and Lienard Differential Equations within Conformable Fractional Operator by Retarded Integral Inequalities, Demonstratio Mathematica, 52(1), 204–212, 2019.
  • [34] F. Usta, A mesh free technique of numerical solution of newly defined conformable differential equations, Konuralp Journal of Mathematics, 2016, 4(2), 149-157.
  • [35] M. Yavuz, T. A. Sulaiman, F. Usta and H. Bulut, Analysis and Numerical Computations of the Fractional Regularized Long Wave Equation with Damping Term, Mathematical Methods in the Applied Sciences, In Press, https://doi.org/10.1002/mma.6343.
  • [36] J.R.L. Webb and G. Infante, Non-local boundary value problems of arbitrary order, J. Lond. Math. Soc. 79(1) (2009), 238-258.
  • [37] G. Wu and D. Baleanu et al., Lattice fractional diffusion equation in terms of a Riesz–Caputo difference. Physics A. 438 (2015), 335–339.
  • [38] X. Zhang, L. Liu and Y. Wu, The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 37 (2014), 26–33.

Solvability of Fractional Boundary Value Problems for a Combined Caputo Derivative

Yıl 2021, Cilt: 9 Sayı: 1, 119 - 126, 28.04.2021

Öz

This paper deals with a class of boundary value problems of the combined Caputo fractional differential equations. The main feature of the combined Caputo fractional derivative is that it holds both left and right nonlocal memory effects. By using the fractional Gronwall-type inequalities and some fixed point theorems, we established some necessary conditions for the existence of solutions. Various examples are given to show the applications of the results.

Kaynakça

  • [1] R. Agarwal, D, O’Regan and S. Stanek, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations.J. Math. Anal. Appl., 371 (2010), 57–68.
  • [2] A. Babakhani and V. Gejji, Existence of positive solutions of nonlinear fractional differential equations.J. Math. Anal.Appl. 278, (2003), 434-442.
  • [3] C. Celik and M. Duman, Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231 (2012) 1743–1750.
  • [4] F. Chen, A. Chen and X. Wu, Anti-periodic boundary value problems with Riesz-Caputo derivative. Adv. Difference Equ. 2019 (2019), 119.
  • [5] Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations . Appl. Math. Lett. 51 (2016), 48–54.
  • [6] M.Darwish and S. Ntouyas, On initial and boundary value problems for fractional order mixed type functional differential inclusion. Comput. Math. Appl. 59 (2010), 1253–1265.
  • [7] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini and P. Paradisi, Discrete random walk models for space–time fractional diffusion. Chem. Phys. 284 (2012), 521–541.
  • [8] C. Gu and G. Wu, Positive solutions of fractional differential equations with the Riesz space derivative. Appl. Math. Lett. 95 (2019), 59–64.
  • [9] L. Guo, L. Liu and W. Ye, Uniqueness of iterative positive solutions for the singular fractional differential equations with integral boundary conditions. Comput. Math. Appl. 59(8) (2010), 2601–2609.
  • [10] A. Kilbas, H.H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204.North–Holland mathematics studies,Elsevier, Amsterdam, 2006.
  • [11] M. Klimek, Stationarity-conservation laws for fractional differential equations with variable coefficients. J. Phys. A 35(31) (2002), 6675- 6693.
  • [12] G. Li and H. Liu, Stability analysis and synchronization for a class of fractional-order neural networks, Entropy, 55 (18) (2016), p. 13.
  • [13] K. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations. John Wiley, NY,1993.
  • [14] G. NGereekata, A Cauchy problem for for some fractional abstract differential equations with fractional order with nonlocal conditions. Nonlinear Anal. 70 (2009), 1873–1876.
  • [15] T. Odzijewicz, A.B. Malinowska and D.F.M. Torres, A generalized fractional calculus of variations Control Cybernet., 2 (42) (2013), pp. 443-458.
  • [16] C. Pinto and A.R.M. Carvalho, New findings on the dynamics of HIV and TB coinfection models, Appl. Math. Comput. (242) (2014), pp. 36-46.
  • [17] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, CA, 1999.
  • [18] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calculus Appl. Anal. 5 (2002), 367–386.
  • [19] B. Ross, S. G. Samko and E. R. Love, Functions that have no first order derivative might have fractional derivatives of all orders less than one. Real Anal. Exchange 20, No 1 (1994/95), 140–157.
  • [20] M. Z. Sarıkaya and F. Usta, On comparison theorems for conformable fractional differential equations, International Journal of Analysis and Applications, 2016, 12(2), 207-214.
  • [21] S. Shen, F. Liu and V. Anh, Numerical approximations and solution techniques for the Caputo-time Riesz–Caputo fractional advection–diffusion equation. Numer. Algorithms. 56 (2011), 383–403.
  • [22] Sierociuk, T. Skovranek, M. Macias, I. Podlubny, I. Petras, A. Dzielinski and P. Ziubinski, Diffusion process modeling by using fractional–order models, Appl. Math. Comput., 15 (257) (2015), pp. 2-11.
  • [23] H. Sun, S. Hu, Y. Chen, W. Chen and Z. Yu, A dynamic–order fractional dynamic system Chinese Phys. Lett., 30 (2013), Article 046601 pp.4.
  • [24] S.Toprakseven, Existence and uniqueness of solutions to anti-periodic Riezs-Caputo impulsive fractional boundary value problems,Tbilisi Mathematical Journal 14(1) (2021), pp. 71–82.
  • [25] S. Toprakseven, Existence and uniqueness of solutions to RieszCaputo impulsive fractional boundary value problems, Journal of Interdisciplinary Mathematics,DOI: 10.1080/09720502.2020.1826629, (2021).
  • [26] S. Toprakseven, Positive solutions for two-point conformable fractional differential equations by monotone iterative scheme, TWMS J. App. and Eng. Math. V.11, N.1, (2021), pp. 289-301.
  • [27] S. Toprakseven, The Existence and Uniqueness of Initial-Boundary Value Problems of the Fractional Caputo-Fabrizio Differential Equations, Universal Journal of Mathematics and Applications, 2 (2) (2019) 100-106.
  • [28] S. Toprakseven, The existence of positive solutions and a Lyapunov-type inequality for boundary value problems of the fractioanl Caputo-Fabrizio differential equations, Sigma J Eng. and Nat. Sci. 37 (4), (2019), 1125-1133.
  • [29] F. Usta, Numerical Analysis of Fractional Volterra Integral Equations via Bernstein Approximation Method, Journal of Computational and Applied Mathematics,384, 2021, 113198, https://doi.org/10.1016/j.cam.2020.113198
  • [30] F. Usta, Fractional type Poisson equations by Radial Basis Functions Kansa approach, Journal of Inequalities and Special Functions, 2016, 7(4), 143-149.
  • [31] F. Usta, Numerical solution of fractional elliptic PDE’s by the collocation method, Applications and Applied Mathematics: An International Journal, 2017, 12(1), 470- 478.
  • [32] F. Usta, H. Budak and M. Z. Sarıkaya, Yang-Laplace transform method Volterra and Abel’s integro-differential equations of fractional order, International Journal of Nonlinear Analysis and Applications, 9 (2018) No. 2, 203-214, http://dx.doi.org/10.22075/ijnaa.2018.13630.1709.
  • [33] F. Usta and M. Z. Sarıkaya, The Analytical Solution of Van der Pol and Lienard Differential Equations within Conformable Fractional Operator by Retarded Integral Inequalities, Demonstratio Mathematica, 52(1), 204–212, 2019.
  • [34] F. Usta, A mesh free technique of numerical solution of newly defined conformable differential equations, Konuralp Journal of Mathematics, 2016, 4(2), 149-157.
  • [35] M. Yavuz, T. A. Sulaiman, F. Usta and H. Bulut, Analysis and Numerical Computations of the Fractional Regularized Long Wave Equation with Damping Term, Mathematical Methods in the Applied Sciences, In Press, https://doi.org/10.1002/mma.6343.
  • [36] J.R.L. Webb and G. Infante, Non-local boundary value problems of arbitrary order, J. Lond. Math. Soc. 79(1) (2009), 238-258.
  • [37] G. Wu and D. Baleanu et al., Lattice fractional diffusion equation in terms of a Riesz–Caputo difference. Physics A. 438 (2015), 335–339.
  • [38] X. Zhang, L. Liu and Y. Wu, The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 37 (2014), 26–33.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Şuayip Toprakseven

Yayımlanma Tarihi 28 Nisan 2021
Gönderilme Tarihi 13 Şubat 2021
Kabul Tarihi 30 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 1

Kaynak Göster

APA Toprakseven, Ş. (2021). Solvability of Fractional Boundary Value Problems for a Combined Caputo Derivative. Konuralp Journal of Mathematics, 9(1), 119-126.
AMA Toprakseven Ş. Solvability of Fractional Boundary Value Problems for a Combined Caputo Derivative. Konuralp J. Math. Nisan 2021;9(1):119-126.
Chicago Toprakseven, Şuayip. “Solvability of Fractional Boundary Value Problems for a Combined Caputo Derivative”. Konuralp Journal of Mathematics 9, sy. 1 (Nisan 2021): 119-26.
EndNote Toprakseven Ş (01 Nisan 2021) Solvability of Fractional Boundary Value Problems for a Combined Caputo Derivative. Konuralp Journal of Mathematics 9 1 119–126.
IEEE Ş. Toprakseven, “Solvability of Fractional Boundary Value Problems for a Combined Caputo Derivative”, Konuralp J. Math., c. 9, sy. 1, ss. 119–126, 2021.
ISNAD Toprakseven, Şuayip. “Solvability of Fractional Boundary Value Problems for a Combined Caputo Derivative”. Konuralp Journal of Mathematics 9/1 (Nisan 2021), 119-126.
JAMA Toprakseven Ş. Solvability of Fractional Boundary Value Problems for a Combined Caputo Derivative. Konuralp J. Math. 2021;9:119–126.
MLA Toprakseven, Şuayip. “Solvability of Fractional Boundary Value Problems for a Combined Caputo Derivative”. Konuralp Journal of Mathematics, c. 9, sy. 1, 2021, ss. 119-26.
Vancouver Toprakseven Ş. Solvability of Fractional Boundary Value Problems for a Combined Caputo Derivative. Konuralp J. Math. 2021;9(1):119-26.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.