Araştırma Makalesi
BibTex RIS Kaynak Göster

Quaternionic $\left( 1,3\right) -$ Bertrand Curves According to Type 2-Quaternionic Frame in $\mathbb{R}^{4}$

Yıl 2021, Cilt: 9 Sayı: 2, 346 - 355, 15.10.2021

Öz

If there exists a quaternionic Bertrand curve in $\mathbb{E}^{4}$, then its torsion or
bitorsion vanishes. So we can say that there is no quaternionic Bertrand
curves whose torsion and bitorsion are non-zero. Hence by using the
method which is given by Matsuda and Yorozu [13], we give the denition
of quaternionic $(1,3)-$Bertrand curve according to Type 2-Quaternionic
Frame and obtain some results about these curves.

Kaynakça

  • [1] Bertrand J. M., Memoire sur la theorie des courbes a double courbure, Comptes Rendus, 15, 332-350, 1850.
  • [2] Bharathi K., Nagaraj M., Quaternion valued function of a real Serret-Frenet formulae, Indian J. Pure Appl. Math. 18 (6) 507-511.
  • [3] Çetin M. Kocayiğit H., On the quaternionic Smarandache curves in Euclidean 3-space, Int.J. Contemp Math Sci 8(3), 139-150, 2013.
  • [4] Ersoy S., Tosun M., Timelike Bertrand curves in semi-Euclidean space, Int. J. Math. Stat., 14(2), 78-89, 2013.
  • [5] Gök İ., Okuyucu O.Z., Kahraman F., Hacısalihoğlu H. H., On the quaternionic B2-slant helices in the Euclidean space E4: Adv. Appl. Cli ord Algebr., 21, 707-719, 2011.
  • [6] Gök İ., Kaya Nurkan S., İlarslan K., On pseudo null Bertrand curves in Minkowski space-time, Kyungpook Math. J. 54(4), 685-697, 2014.
  • [7] Güngör M. A. and Tosun M., Some characterizations of quaternionic rectifying curves, Di er. Geom. Dyn. Syst. 13, 89-100, 2011.
  • [8] Irmak Y., Bertrand Curves and Geometric Applications in Four Dimensional Euclidean Space, MSc thesis, Ankara University, Institute of Science, 2018.
  • [9] Kahraman Aksoyak F., Gök İ.., İlarslan K., Generalized null Bertrand curves in Minkowski space-time, An. Ştiint. Univ. Al. I. Cuza, Iasi, Mat. (N.S.) 60 (2), 489-502, 2014.
  • [10] Kahraman Aksoyak F., A new type of quaternionic Frame in R4; Int. J. Geom. Methods Mod. Phys., 16 (6), 1950084 (11 pages), 2019.
  • [11] Karadağ M., Sivridağ A., Quaternion valued functions of a single real variable and inclined curves, Erciyes Univ. J. Inst. Sci. Technol 13, 23-36,1997.
  • [12] Keçilioğlu O., İlarslan K. , Quaternionic Bertrand curves in Euclidean 4- space. Bull. Math. Anal. Appl. 5 (3), 27{38, 2013.
  • [13] Matsuda H. and Yorozu S., Notes on Bertrand curves. Yokohama Math. J. 50 (1-2), 41-58, 2003.
  • [14]  Önder M., Quaternionic Salkowski curves and quaternionic similar curves, Proc. Natl. Acad. Sci. India, Sect. A Phys. Sci., 90 (3), 447-456, 2020.
  • [15]  Öztürk G., Kişi İ., Büyükkütük S. , Constant ratio quaternionic curves in Euclidean spaces. Adv. Appl. Cli ord Algebr. 27 (2), 1659-1673, 2017.
  • [16] Pears L. R., Bertrand curves in Riemannian space, J. London Math. Soc. 1-10 (2), 180-183, 1935.
  • [17] Şenyurt S., Cevahir C., Altun Y., On spatial quaternionic involute curve a new view. Adv. Appl. Cli ord Algebr. 27 (2), 1815-1824, 2017.
  • [18] Uçum A., İlarslan K., Sasaki M., On (1,3)-Cartan null Bertrand curves in semi-Euclidean 4-space with index 2, J. Geom., 107 (3), 579-591, 2016.
  • [19] Uçum A., Keçilioğlu O., İlarslan K., Generalized Bertrand curves with spacelike (1,3)-normal plane in Minkowski space-time, Turkish J. Math., 40 (3), 487-505, 2016. [20] Uçum A., Keçilioğlu O., İlarslan K., Generalized Bertrand curves with timelike (1,3)-normal plane in Minkowski space-time, Kuwait J. Sci., 42 (3), 10-27, 2015.
  • [21] Yıldız Ö.G., İçer  O., A note on evolution of quaternionic curves in the Euclidean space R4; Konuralp J. Math., 7(2), 462-469, 2019.
  • [22] Yoon D.W. , On the quaternionic general helices in Euclidean 4-space, Honam Mathematical J. 34(3), 381-390, 2012.
  • [23] Yoon D.W., Dae Won, Y. Tuncer, Yilmaz, M.K. Karacan, Generalized Mannheim quaternionic curves in Euclidean 4-space. Appl. Math. Sci. (Ruse) 7, 6583-6592, 2013.
Yıl 2021, Cilt: 9 Sayı: 2, 346 - 355, 15.10.2021

Öz

Kaynakça

  • [1] Bertrand J. M., Memoire sur la theorie des courbes a double courbure, Comptes Rendus, 15, 332-350, 1850.
  • [2] Bharathi K., Nagaraj M., Quaternion valued function of a real Serret-Frenet formulae, Indian J. Pure Appl. Math. 18 (6) 507-511.
  • [3] Çetin M. Kocayiğit H., On the quaternionic Smarandache curves in Euclidean 3-space, Int.J. Contemp Math Sci 8(3), 139-150, 2013.
  • [4] Ersoy S., Tosun M., Timelike Bertrand curves in semi-Euclidean space, Int. J. Math. Stat., 14(2), 78-89, 2013.
  • [5] Gök İ., Okuyucu O.Z., Kahraman F., Hacısalihoğlu H. H., On the quaternionic B2-slant helices in the Euclidean space E4: Adv. Appl. Cli ord Algebr., 21, 707-719, 2011.
  • [6] Gök İ., Kaya Nurkan S., İlarslan K., On pseudo null Bertrand curves in Minkowski space-time, Kyungpook Math. J. 54(4), 685-697, 2014.
  • [7] Güngör M. A. and Tosun M., Some characterizations of quaternionic rectifying curves, Di er. Geom. Dyn. Syst. 13, 89-100, 2011.
  • [8] Irmak Y., Bertrand Curves and Geometric Applications in Four Dimensional Euclidean Space, MSc thesis, Ankara University, Institute of Science, 2018.
  • [9] Kahraman Aksoyak F., Gök İ.., İlarslan K., Generalized null Bertrand curves in Minkowski space-time, An. Ştiint. Univ. Al. I. Cuza, Iasi, Mat. (N.S.) 60 (2), 489-502, 2014.
  • [10] Kahraman Aksoyak F., A new type of quaternionic Frame in R4; Int. J. Geom. Methods Mod. Phys., 16 (6), 1950084 (11 pages), 2019.
  • [11] Karadağ M., Sivridağ A., Quaternion valued functions of a single real variable and inclined curves, Erciyes Univ. J. Inst. Sci. Technol 13, 23-36,1997.
  • [12] Keçilioğlu O., İlarslan K. , Quaternionic Bertrand curves in Euclidean 4- space. Bull. Math. Anal. Appl. 5 (3), 27{38, 2013.
  • [13] Matsuda H. and Yorozu S., Notes on Bertrand curves. Yokohama Math. J. 50 (1-2), 41-58, 2003.
  • [14]  Önder M., Quaternionic Salkowski curves and quaternionic similar curves, Proc. Natl. Acad. Sci. India, Sect. A Phys. Sci., 90 (3), 447-456, 2020.
  • [15]  Öztürk G., Kişi İ., Büyükkütük S. , Constant ratio quaternionic curves in Euclidean spaces. Adv. Appl. Cli ord Algebr. 27 (2), 1659-1673, 2017.
  • [16] Pears L. R., Bertrand curves in Riemannian space, J. London Math. Soc. 1-10 (2), 180-183, 1935.
  • [17] Şenyurt S., Cevahir C., Altun Y., On spatial quaternionic involute curve a new view. Adv. Appl. Cli ord Algebr. 27 (2), 1815-1824, 2017.
  • [18] Uçum A., İlarslan K., Sasaki M., On (1,3)-Cartan null Bertrand curves in semi-Euclidean 4-space with index 2, J. Geom., 107 (3), 579-591, 2016.
  • [19] Uçum A., Keçilioğlu O., İlarslan K., Generalized Bertrand curves with spacelike (1,3)-normal plane in Minkowski space-time, Turkish J. Math., 40 (3), 487-505, 2016. [20] Uçum A., Keçilioğlu O., İlarslan K., Generalized Bertrand curves with timelike (1,3)-normal plane in Minkowski space-time, Kuwait J. Sci., 42 (3), 10-27, 2015.
  • [21] Yıldız Ö.G., İçer  O., A note on evolution of quaternionic curves in the Euclidean space R4; Konuralp J. Math., 7(2), 462-469, 2019.
  • [22] Yoon D.W. , On the quaternionic general helices in Euclidean 4-space, Honam Mathematical J. 34(3), 381-390, 2012.
  • [23] Yoon D.W., Dae Won, Y. Tuncer, Yilmaz, M.K. Karacan, Generalized Mannheim quaternionic curves in Euclidean 4-space. Appl. Math. Sci. (Ruse) 7, 6583-6592, 2013.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Ferdağ Kahraman Aksoyak

Yayımlanma Tarihi 15 Ekim 2021
Gönderilme Tarihi 22 Ocak 2021
Kabul Tarihi 5 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 2

Kaynak Göster

APA Kahraman Aksoyak, F. (2021). Quaternionic $\left( 1,3\right) -$ Bertrand Curves According to Type 2-Quaternionic Frame in $\mathbb{R}^{4}$. Konuralp Journal of Mathematics, 9(2), 346-355.
AMA Kahraman Aksoyak F. Quaternionic $\left( 1,3\right) -$ Bertrand Curves According to Type 2-Quaternionic Frame in $\mathbb{R}^{4}$. Konuralp J. Math. Ekim 2021;9(2):346-355.
Chicago Kahraman Aksoyak, Ferdağ. “Quaternionic $\left( 1,3\right) -$ Bertrand Curves According to Type 2-Quaternionic Frame in $\mathbb{R}^{4}$”. Konuralp Journal of Mathematics 9, sy. 2 (Ekim 2021): 346-55.
EndNote Kahraman Aksoyak F (01 Ekim 2021) Quaternionic $\left( 1,3\right) -$ Bertrand Curves According to Type 2-Quaternionic Frame in $\mathbb{R}^{4}$. Konuralp Journal of Mathematics 9 2 346–355.
IEEE F. Kahraman Aksoyak, “Quaternionic $\left( 1,3\right) -$ Bertrand Curves According to Type 2-Quaternionic Frame in $\mathbb{R}^{4}$”, Konuralp J. Math., c. 9, sy. 2, ss. 346–355, 2021.
ISNAD Kahraman Aksoyak, Ferdağ. “Quaternionic $\left( 1,3\right) -$ Bertrand Curves According to Type 2-Quaternionic Frame in $\mathbb{R}^{4}$”. Konuralp Journal of Mathematics 9/2 (Ekim 2021), 346-355.
JAMA Kahraman Aksoyak F. Quaternionic $\left( 1,3\right) -$ Bertrand Curves According to Type 2-Quaternionic Frame in $\mathbb{R}^{4}$. Konuralp J. Math. 2021;9:346–355.
MLA Kahraman Aksoyak, Ferdağ. “Quaternionic $\left( 1,3\right) -$ Bertrand Curves According to Type 2-Quaternionic Frame in $\mathbb{R}^{4}$”. Konuralp Journal of Mathematics, c. 9, sy. 2, 2021, ss. 346-55.
Vancouver Kahraman Aksoyak F. Quaternionic $\left( 1,3\right) -$ Bertrand Curves According to Type 2-Quaternionic Frame in $\mathbb{R}^{4}$. Konuralp J. Math. 2021;9(2):346-55.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.