Year 2022,
Volume: 10 Issue: 1, 112 - 117, 15.04.2022
Süleyman Şenyurt
,
Osman Çakır
Supporting Institution
yok
Thanks
Dergi ve Hakemlere şimdiden teşekkür ederiz.
References
- [1] B. Y. Chen and S. Ishikawa, Biharmonic Surface in Pseudo-Euclidean Spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, Vol:45, No.2 (1991) , p. 323–347.
- [2] O. Cakır and S. Senyurt, Harmonicity and Differential Equation of Involute of a Curve in E^3, Thermal Science, Vol: 23, No.6 (2019), p. 2119–2125.
- [3] K. Arslan, H. Kocayigit and M. Onder, Characterizations of Space Curves with 1-type Darboux Instantaneou Rotation Vector, Commun. Korean Math. ¨Soc., Vol: 31, No.2 (2016), p. 379–388.
- [4] S. Senyurt and O. C¸ akır, Characterizations of Curves According to Frenet Frame in Euclidean Space, Turk. J. Math. Comput. Sci., Vol: 11, No.1 (2019),p. 48–52.
- [5] S. Senyurt and O. Cakır, Diferential Equations for a Space Curve According to the Unit Darboux Vector, Turk. J. Math. Comput. Sci., Vol: 9, No.1 (2018), p. 91–97.
- [6] Sabuncuoglu A., Diferensiyel Geometri, Nobel Akademik Yayincilik, Ankara, 2014.
- [7] S. Senyurt, A. Calıskan and U. Celik, N∗C∗–Smarandache Curve of Bertrand Curves Pair According to Frenet Frame, International J.Math. Combin.,Vol:1, (2016), p. 1–7.
- [8] O. Cakır and S. Senyurt, On Harmonicity and Differential Equations of a Bertrand Curve in E^3, arXiv: 2103.0301
Characterizations of a Bertrand Curve According to Darboux Vector
Year 2022,
Volume: 10 Issue: 1, 112 - 117, 15.04.2022
Süleyman Şenyurt
,
Osman Çakır
Abstract
In this paper, we first take a Bertrand curve pair and then we use Darboux vector instead of mean curvature vector to give characterizations of Bertrand partner curve by means of the Bertrand curve. By making use of the relations between the Frenet frames of the Bertrand curve pair we give the differential equations and sufficient conditions of harmonicity(biharmonic or 1-type harmonic) of the Bertrand partner curve in terms of the Darboux vector of the Bertrand curve. After driving the conclusions we write an example to demonstrate how our assumptions come true
References
- [1] B. Y. Chen and S. Ishikawa, Biharmonic Surface in Pseudo-Euclidean Spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, Vol:45, No.2 (1991) , p. 323–347.
- [2] O. Cakır and S. Senyurt, Harmonicity and Differential Equation of Involute of a Curve in E^3, Thermal Science, Vol: 23, No.6 (2019), p. 2119–2125.
- [3] K. Arslan, H. Kocayigit and M. Onder, Characterizations of Space Curves with 1-type Darboux Instantaneou Rotation Vector, Commun. Korean Math. ¨Soc., Vol: 31, No.2 (2016), p. 379–388.
- [4] S. Senyurt and O. C¸ akır, Characterizations of Curves According to Frenet Frame in Euclidean Space, Turk. J. Math. Comput. Sci., Vol: 11, No.1 (2019),p. 48–52.
- [5] S. Senyurt and O. Cakır, Diferential Equations for a Space Curve According to the Unit Darboux Vector, Turk. J. Math. Comput. Sci., Vol: 9, No.1 (2018), p. 91–97.
- [6] Sabuncuoglu A., Diferensiyel Geometri, Nobel Akademik Yayincilik, Ankara, 2014.
- [7] S. Senyurt, A. Calıskan and U. Celik, N∗C∗–Smarandache Curve of Bertrand Curves Pair According to Frenet Frame, International J.Math. Combin.,Vol:1, (2016), p. 1–7.
- [8] O. Cakır and S. Senyurt, On Harmonicity and Differential Equations of a Bertrand Curve in E^3, arXiv: 2103.0301