Research Article
BibTex RIS Cite

One Parameter Commutative Octonions

Year 2023, Volume: 11 Issue: 2, 169 - 175, 31.10.2023

Abstract

Hyperbolic numbers had been developed in the 19th century. Octonions forms a noncommutative and nonassociative normed division algebra over reals. Octonions have many applications in fields of physics such as quantum logic and string theory. Cayley-Dickson process is applied to quaternions in order to construct octonions and in a sense, we follow a similar process. The aim of this study is to introduce the concept of commutative octonions. We construct this algebra by using some matrix methods. After construction, we give a number of properties of commutative octonions such as fundamental matrices and principal conjugates. We also obtain representation of a commutative octonion as decomposed form, holomorphic and analytic functions of commutative octonions.

References

  • [1] Bilgici, G., Unal, Z., Tokeser, U. and Mert, T., On Fibonacci and Lucas generalized octonions, Ars Combinatoria, 138 (2018), 35–44.
  • [2] Catoni, F., Cannata, R., Catoni, V. and Zampetti, P., N-dimensional geometries generated by hypercomplex numbers, Adv. Appl. Clifford Algebr., 15 (2005), 1–25.
  • [3] Catoni, F., Cannata, R. and Zampetti, P., An introduction to commutative quaternions, Adv. Appl. Clifford Algebr., 16 (2006), 1–28.
  • [4] Catoni, F., Boccalett, D., Cannata, R., Catoni, V., Nichelatti, E. and Zampetti, P., The Mathematics of Mikowski Space–Time and Introduction to Commutative Hypercomplex Numbers. Birkhauser–Verlag, Basel, 2008.
  • [5] Freedman, M., Shokrian-Zini, M. and Wang, Z., Quantum computing with octonions, Peking Math. J., 2(3) (2019), 239–273.
  • [6] Gunaydin, M., Kallosh, R., Linde, A. and Yamada, Y., M-theory cosmology, octonions, error correcting codes, J. High Energ. Phys., 2021(1) (2021) , 1–60.
  • [7] Hamilton, W.R., Lectures on Quaternions, Hodges and Smith, Dublin, 1853.
  • [8] Klco, P., Kollarik, M. and Tatar, M., Novel computer algorithm for cough monitoring based on octonions, Respiratory Physiology & Neurobiology, 257 (2018), 36–41.
  • [9] Kosal, H.H. and Tosun, M., Commutative quaternion matrices, Adv. Appl. Clifford Algebr., 24 (2014), 769–779.
  • [10] Okubo, S., Introduction to Octonion and Other Non-Associative Algebras in Physics, Cambridge University Press, London, 1995.
  • [11] Segre, C., The real representations of complex elements and extension to bicomplex system, Math. Ann., 40 (1892), 413–467.
  • [12] Singh, T.P., Octonions, trace dynamics and noncommutative geometry-A case for unification in spontaneous quantum gravity, Zeitschrift f¨ur Naturforschung A, 75(12) (2020), 1051–1062.
  • [13] Srivastava, G., Gupta, R. Kumar, R. and Le, D.N., Space-time code design using quaternions, octonions and other non-associative structures, International Journal of Electrical and Computer Engineering Systems 10(2) (2019), 91–95.
  • [14] Tokeser, U., Mert, T., Unal, Z. and Bilgici, G., On Pell and Pell–Lucas generalized octonions, Turkish Journal of Mathematics and Computer Sciences, 13(2) (2021), 226–233.
  • [15] Tokeser, U., Mert, T. and Dundar, Y., Some properties and Vajda theorems of split dual Fibonacci and split dual Lucas octonions, AIMS Math., 7(5) (2022), 8645–8653.
  • [16] Weng, Z.H., Frequencies of astrophysical jets and gravitational strengths in the octonion spaces, International Journal of Modern Physics D., 31 (4) (2022), 2250024-1–2250024-16.
Year 2023, Volume: 11 Issue: 2, 169 - 175, 31.10.2023

Abstract

References

  • [1] Bilgici, G., Unal, Z., Tokeser, U. and Mert, T., On Fibonacci and Lucas generalized octonions, Ars Combinatoria, 138 (2018), 35–44.
  • [2] Catoni, F., Cannata, R., Catoni, V. and Zampetti, P., N-dimensional geometries generated by hypercomplex numbers, Adv. Appl. Clifford Algebr., 15 (2005), 1–25.
  • [3] Catoni, F., Cannata, R. and Zampetti, P., An introduction to commutative quaternions, Adv. Appl. Clifford Algebr., 16 (2006), 1–28.
  • [4] Catoni, F., Boccalett, D., Cannata, R., Catoni, V., Nichelatti, E. and Zampetti, P., The Mathematics of Mikowski Space–Time and Introduction to Commutative Hypercomplex Numbers. Birkhauser–Verlag, Basel, 2008.
  • [5] Freedman, M., Shokrian-Zini, M. and Wang, Z., Quantum computing with octonions, Peking Math. J., 2(3) (2019), 239–273.
  • [6] Gunaydin, M., Kallosh, R., Linde, A. and Yamada, Y., M-theory cosmology, octonions, error correcting codes, J. High Energ. Phys., 2021(1) (2021) , 1–60.
  • [7] Hamilton, W.R., Lectures on Quaternions, Hodges and Smith, Dublin, 1853.
  • [8] Klco, P., Kollarik, M. and Tatar, M., Novel computer algorithm for cough monitoring based on octonions, Respiratory Physiology & Neurobiology, 257 (2018), 36–41.
  • [9] Kosal, H.H. and Tosun, M., Commutative quaternion matrices, Adv. Appl. Clifford Algebr., 24 (2014), 769–779.
  • [10] Okubo, S., Introduction to Octonion and Other Non-Associative Algebras in Physics, Cambridge University Press, London, 1995.
  • [11] Segre, C., The real representations of complex elements and extension to bicomplex system, Math. Ann., 40 (1892), 413–467.
  • [12] Singh, T.P., Octonions, trace dynamics and noncommutative geometry-A case for unification in spontaneous quantum gravity, Zeitschrift f¨ur Naturforschung A, 75(12) (2020), 1051–1062.
  • [13] Srivastava, G., Gupta, R. Kumar, R. and Le, D.N., Space-time code design using quaternions, octonions and other non-associative structures, International Journal of Electrical and Computer Engineering Systems 10(2) (2019), 91–95.
  • [14] Tokeser, U., Mert, T., Unal, Z. and Bilgici, G., On Pell and Pell–Lucas generalized octonions, Turkish Journal of Mathematics and Computer Sciences, 13(2) (2021), 226–233.
  • [15] Tokeser, U., Mert, T. and Dundar, Y., Some properties and Vajda theorems of split dual Fibonacci and split dual Lucas octonions, AIMS Math., 7(5) (2022), 8645–8653.
  • [16] Weng, Z.H., Frequencies of astrophysical jets and gravitational strengths in the octonion spaces, International Journal of Modern Physics D., 31 (4) (2022), 2250024-1–2250024-16.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Göksal Bilgici 0000-0001-9964-5578

Publication Date October 31, 2023
Submission Date October 7, 2022
Acceptance Date October 23, 2023
Published in Issue Year 2023 Volume: 11 Issue: 2

Cite

APA Bilgici, G. (2023). One Parameter Commutative Octonions. Konuralp Journal of Mathematics, 11(2), 169-175.
AMA Bilgici G. One Parameter Commutative Octonions. Konuralp J. Math. October 2023;11(2):169-175.
Chicago Bilgici, Göksal. “One Parameter Commutative Octonions”. Konuralp Journal of Mathematics 11, no. 2 (October 2023): 169-75.
EndNote Bilgici G (October 1, 2023) One Parameter Commutative Octonions. Konuralp Journal of Mathematics 11 2 169–175.
IEEE G. Bilgici, “One Parameter Commutative Octonions”, Konuralp J. Math., vol. 11, no. 2, pp. 169–175, 2023.
ISNAD Bilgici, Göksal. “One Parameter Commutative Octonions”. Konuralp Journal of Mathematics 11/2 (October 2023), 169-175.
JAMA Bilgici G. One Parameter Commutative Octonions. Konuralp J. Math. 2023;11:169–175.
MLA Bilgici, Göksal. “One Parameter Commutative Octonions”. Konuralp Journal of Mathematics, vol. 11, no. 2, 2023, pp. 169-75.
Vancouver Bilgici G. One Parameter Commutative Octonions. Konuralp J. Math. 2023;11(2):169-75.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.