Research Article
BibTex RIS Cite
Year 2023, Volume: 11 Issue: 2, 127 - 130, 31.10.2023

Abstract

References

  • [1] B. Benaissa, M.Z. Sarikaya, A. Senouci On some new Hardy-type inequalities, Math. Meth. Appl .Sci., 43, 8488-8495 (2020).
  • [2] B. Benaissa, M.Z. Sarikaya, Some Hardy-type integral inequalities involving functions of two independent variables, Positivity, 25, 853-866 (2021).
  • [3] G. H. Hardy, Note on a theorem of Hilbert, Math. Z. 6 (1920), 314–317.
  • [4] G. H. Hardy, Notes on some points in the integral calculus, LX. An inequality between integrals, Messenger of Math. 54, (1925), 150-156.
  • [5] G. H. Hardy, Notes on some points in the integral calculus, LXIV. Further inequalities between integrals. Messenger of Math. 57 (1928), 12–16.
  • [6] M. Izumi, S. Izumi and G. Peterson, On Hardy’s Inequality and its Generalization, Tohoku Math .J. ; 21, (1999), 601-613.
  • [7] A. Kufner, L. Maligranda and L.E. Persson, The Hardy Inequality- About its History and Some Related Results, Vydavatelsky Servis Publishing House, Pilsen, 2007.
  • [8] A. Kufner and L.E. Persson,Weighted Inequalities of Hardy Type, World Scientific Publishing Co., Singapore, 2003.
  • [9] A. Moazzena, R. Lashkaripour, Some new extensions of Hardy‘s inequality, Int. J. Nonlinear Anal. Appl. 5 (2014) No. 1, 98-109.
  • [10] J. A. Oguntuase, Remark on an Integral Inequality of the Hardy type, Krag. J. Math.32, 2009, 133-138.
  • [11] J. A. Oguntuase, On Hardy’s integral inequality, Proceedings of the Jangjeon Mathematical Society, Vol. 3, 2001, 37–44.
  • [12] M. Z. Sarikaya and H. Yildirim, Some Hardy-type integral inequalities, J. Ineq. Pure .Appl. Math, 7(5), Art 178 (2006).
  • [13] M. Z. Sarikaya, Hardy Type Inequalities for Conformable Fractional Integrals, Konuralp Journal of Mathematics, 2020, 8.1: 211-215.
  • [14] M. Z. Sarikaya, H. Yildirim and A. Saglam, On Hardy type integral inequality associated with the generalized translation, Int. J. Contemp. Math. Sci, 2006, 1.7: 333-340.
  • [15] F. Wang, U. Hanif, A. Nosheen, K. A. Khan, H. Ahmad and K. Nonlaopon, Some Hardy-type inequalities for convex functions via delta fractional integrals, Fractals, 30(01), 2240004, (2022).

Hardy Type Inequalities for Convex Functions

Year 2023, Volume: 11 Issue: 2, 127 - 130, 31.10.2023

Abstract

In this article, we aim to extend the scope of Hardy type inequalities by exploring their applicability to convex functions. We present various types of new Hardy integral inequalities for convex functions, which can be applied in diverse scenarios. Additionally, we provide several practical applications of these inequalities.

References

  • [1] B. Benaissa, M.Z. Sarikaya, A. Senouci On some new Hardy-type inequalities, Math. Meth. Appl .Sci., 43, 8488-8495 (2020).
  • [2] B. Benaissa, M.Z. Sarikaya, Some Hardy-type integral inequalities involving functions of two independent variables, Positivity, 25, 853-866 (2021).
  • [3] G. H. Hardy, Note on a theorem of Hilbert, Math. Z. 6 (1920), 314–317.
  • [4] G. H. Hardy, Notes on some points in the integral calculus, LX. An inequality between integrals, Messenger of Math. 54, (1925), 150-156.
  • [5] G. H. Hardy, Notes on some points in the integral calculus, LXIV. Further inequalities between integrals. Messenger of Math. 57 (1928), 12–16.
  • [6] M. Izumi, S. Izumi and G. Peterson, On Hardy’s Inequality and its Generalization, Tohoku Math .J. ; 21, (1999), 601-613.
  • [7] A. Kufner, L. Maligranda and L.E. Persson, The Hardy Inequality- About its History and Some Related Results, Vydavatelsky Servis Publishing House, Pilsen, 2007.
  • [8] A. Kufner and L.E. Persson,Weighted Inequalities of Hardy Type, World Scientific Publishing Co., Singapore, 2003.
  • [9] A. Moazzena, R. Lashkaripour, Some new extensions of Hardy‘s inequality, Int. J. Nonlinear Anal. Appl. 5 (2014) No. 1, 98-109.
  • [10] J. A. Oguntuase, Remark on an Integral Inequality of the Hardy type, Krag. J. Math.32, 2009, 133-138.
  • [11] J. A. Oguntuase, On Hardy’s integral inequality, Proceedings of the Jangjeon Mathematical Society, Vol. 3, 2001, 37–44.
  • [12] M. Z. Sarikaya and H. Yildirim, Some Hardy-type integral inequalities, J. Ineq. Pure .Appl. Math, 7(5), Art 178 (2006).
  • [13] M. Z. Sarikaya, Hardy Type Inequalities for Conformable Fractional Integrals, Konuralp Journal of Mathematics, 2020, 8.1: 211-215.
  • [14] M. Z. Sarikaya, H. Yildirim and A. Saglam, On Hardy type integral inequality associated with the generalized translation, Int. J. Contemp. Math. Sci, 2006, 1.7: 333-340.
  • [15] F. Wang, U. Hanif, A. Nosheen, K. A. Khan, H. Ahmad and K. Nonlaopon, Some Hardy-type inequalities for convex functions via delta fractional integrals, Fractals, 30(01), 2240004, (2022).
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Articles
Authors

Mehmet Zeki Sarıkaya

Publication Date October 31, 2023
Submission Date September 26, 2023
Acceptance Date October 21, 2023
Published in Issue Year 2023 Volume: 11 Issue: 2

Cite

APA Sarıkaya, M. Z. (2023). Hardy Type Inequalities for Convex Functions. Konuralp Journal of Mathematics, 11(2), 127-130.
AMA Sarıkaya MZ. Hardy Type Inequalities for Convex Functions. Konuralp J. Math. October 2023;11(2):127-130.
Chicago Sarıkaya, Mehmet Zeki. “Hardy Type Inequalities for Convex Functions”. Konuralp Journal of Mathematics 11, no. 2 (October 2023): 127-30.
EndNote Sarıkaya MZ (October 1, 2023) Hardy Type Inequalities for Convex Functions. Konuralp Journal of Mathematics 11 2 127–130.
IEEE M. Z. Sarıkaya, “Hardy Type Inequalities for Convex Functions”, Konuralp J. Math., vol. 11, no. 2, pp. 127–130, 2023.
ISNAD Sarıkaya, Mehmet Zeki. “Hardy Type Inequalities for Convex Functions”. Konuralp Journal of Mathematics 11/2 (October 2023), 127-130.
JAMA Sarıkaya MZ. Hardy Type Inequalities for Convex Functions. Konuralp J. Math. 2023;11:127–130.
MLA Sarıkaya, Mehmet Zeki. “Hardy Type Inequalities for Convex Functions”. Konuralp Journal of Mathematics, vol. 11, no. 2, 2023, pp. 127-30.
Vancouver Sarıkaya MZ. Hardy Type Inequalities for Convex Functions. Konuralp J. Math. 2023;11(2):127-30.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.