Ostrowski Type Inequalities Including Riemann-Liouville Fractional Integrals for Two Variable Functions
Year 2024,
Volume: 12 Issue: 1, 62 - 73, 30.04.2024
Samet Erden
,
Burçin Gökkurt Özdemir
,
Sevgi Kılıçer
,
Canmert Demır
Abstract
The main purpose of this study is to establish new inequalities including Riemann-Liouville fractional integrals for various classes of functions with two variables. We first establish two identities involving Riemann-Liouville fractional integrals for higher-order partial differential functions. Then, some fractional Ostrowski type inequalities for functions of bounded variation of two variables are attained. Moreover, we present fractional integral inequalities for functions whose higher-order partial derivatives are elements of $L_{\infty }$ and $L_{1},$ respectively. Some special cases and midpoint versions of our main results are also examined.
References
- [1] Agli´c Aljinovi´c, A. (2014). Montgomery identity and Ostrowski type inequalities for Riemann-Liouville fractional integral. Journal of Mathematics,
Article ID 503195, 6 pages.
- [2] Anastassiou, G. (1995). Ostrowski type inequalities. Proc. of the American Math. Soc., 123 (12), 3775-378.
- [3] Barnett, N.S., & Dragomir, S.S. (2001). An Ostrowski type inequality for double integrals and applications for cubature formulae. Soochow J. Math.,
27(1), 1-10.
- [4] Budak H. and Sarikaya, M.Z.(2016). On Ostrowski type inequalities for functions of two variables with bounded variation, International Journal of
Analysis and Applications, 12 (2), 142-156.
- [5] Budak, H.; Sarikaya, M.Z. and Erden, S. (2016). New weighted Ostrowski type inequalities for mappings whose nth derivatives are of bounded variation,
International J. of Analysis and App., 12 (1), 71-79.
- [6] Budak, H. and Sarikaya, M.Z. (2016). A new Ostrowski type inequality for functions whose first derivatives are of bounded variation, Moroccan J. Pure
Appl. Anal., 2(1); 1–11.
- [7] Cerone, P.; Dragomir, S.S. and Roumeliotis, (1999). Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio
Math., 32 (4), 697-712.
- [8] Changjian, Z. and Cheung, W.S. (2010). On Ostrowski-type inequalities for heigher-order partial derivatives. Journal of Ineqaulities and Applications,
1-8.
- [9] Clarkson, J.A., Adams, C.R. (1933). On definitions of bounded variation for functions of two variables, Bull. Amer. Math. Soc. V.35 pp.824-854.
- [10] Dragomir, S.S. (2001). On the Ostrowski’s integral inequality for mappings with bounded variation and applications, Mathematical Inequalities &
Applications, 4 (1), 59–66.
- [11] Dragomir, S.S. and Wang, S. (1997). A new inequality of Ostrowski’s type in L1-norm and applications to some special means and to some numerical
quadrature rules. Tamkang J. of Math., 28(3), 239-244.
- [12] Dragomir, S. S. and Wang, A. (1998). A new inequality of Ostrowski’s type in Lp-norm and applications to some special means and to some numerical
quadrature rules. Indian Journal of Mathematics, 40(3), 299-304.
- [13] Dragomir, S. S., Barnett, N. S. and Cerone, P. (2003). An Ostrowski type inequality for double integrals in terms of Lp-norms and applications in
numerical integration. Anal. Num. Theor. Approx., 32(2), 161-169.
- [14] Dragomir, S. S. (2017). Ostrowski type inequalities for generalized Riemann Liouville fractional integrals of bounded variation. H¨older and Lipschitzian
functions. RGMIA Research Report Collection, 20, Article 48, 1-14.
- [15] Dragomir, S. S. (2017).Ostrowski Type inequalities for riemann-Liouville fractional integrals of absolutely continuous functions in terms of ¥norms.
RGMIA Research Report Collection, 20, Article 49, 1-14.
- [16] Dragomir, S. S. (2017). Ostrowski Type inequalities for riemann-Liouville fractional integrals of absolutely continuous functions in terms of pnorms.
RGMIA Research Report Collection, 20, Article 50.
- [17] Dragomir, S. S. (2020). Ostrowski and trapezoid type inequalities for Riemann-Liouville fractional integrals of absolutely continuous functions with
bounded derivatives. Fractional Differential Calculus, 10(2), 307-320.
- [18] Erden, S., Sarikaya, M. Z., and Budak, H. (2018). New weighted inequalities for higher order derivatives and applications. Filomat, 32(12), 4419-4433.
- [19] Erden, S., Budak, H., Sarikaya, M. Z., Iftikhar, S. and Kumam, P. (2020). Fractional Ostrowski type inequalities for bounded functions. Journal of
Inequalities and Applications, 123, 1-11.
- [20] Erden, S., Budak, H., and Sarikaya, M. Z. (2020). Fractional Ostrowski type inequalities for functions of bounded variaton with two variables. Miskolc
Mathematical Notes, 21(1), 171-188.
- [21] Erden, S. and Baskir, B. M. (2021). Improved results of perturbed inequalities for higher-order differentiable functions and their various applications.
Filomat, 35(10), 3475-3490.
- [22] Farid, G. (2017). Some new Ostrowski type inequalities via fractional integrals. International Journal of Analysis and Applications, 14(1), 64-68.
- [23] Fink, M. A. (1992). Bounds on the deviation of a function from its averages, Czechoslovak Mathematical Journal, 42 (117): 289-310.
- [24] Gorenflo, R. and Mainardi, F. (1997). Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien, 223-276.
- [25] Hanna, G., Dragomir, S. S. and Cerone, P. (2002). A general Ostrowski type inequality for double integrals, Tamkang Journal of Mathematics, 33 (4),
319-333
- [26] Kashif, A. R., Shoaib, M. and Latif, M. A. (2016). Improved version of perturbed Ostrowski type inequalities for n-times differentiable mappings with
three-step kernel and its application. J. Nonlinear Sci. Appl, 9, 3319-3332.
- [27] Lakoud, A. G. and Aissaoui, F. (2013). New fractional inequalities of Ostrowski type, Transylv. J. Math. Mech., 5(2), 103-106
- [28] Latif M.A. and Hussain, S. (2012). New inequalities of Ostrowski type for co-ordinated convex functions via fractional integrals, J Fractional Calc Appl.
2(9):1–15.
- [29] Ostrowski, A.M. (1938). U¨ ber die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv. 10, 226-227.
- [30] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego.
- [31] Qayyum, A., Shoaib, M. and Erden, S. (2019). Generalized fractional Ostrowski type inequality for higher order derivatives, New Trends in Mathematical
Sciences (NTMSCI), 4 (2), 111-124.
- [32] Qayyum, A.; Shoaib, M. and Faye, I. (2016). On new refinements and applications of efficient quadrature rules using n-times differentiable mappings,
RGMIA Research Report Collection, 19, Article 9, 22 pp.
- [33] Sarikaya, M. Z., Set, E., Yaldiz, H., and Bas¸ak, N. (2013). Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities.
Mathematical and Computer Modelling, 57(9-10), 2403-2407.
- [34] Sarıkaya, M. Z. (2014). On the Hermite–Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transforms and
Special Functions, 25(2), 134-147.
- [35] Sarikaya, M. Z. and Filiz, H. (2014). Note on the Ostrowski type inequalities for fractional integrals. Vietnam Journal of Mathematics, 42, 187-190.
- [36] Sarıkaya, M. Z. (2023). On the generalized Ostrowski type inequalities for co-ordinated convex functions. Filomat, 37(22), 7351-7366.
- [37] Sofo, A. (2002). Integral inequalities for n- times differentiable mappings, with multiple branches,on the Lp norm, Soochow Journal of Mathematics, 28
(2), 179-221.
- [38] Ujevi´c, N. (2003). Ostrowski-Gr¨uss type inequalities in two dimensional, J. of Ineq. in Pure and Appl. Math., 4 (5), article 101.
- [39] Wang M. and Zhao, X. (2009). Ostrowski type inequalities for higher-order derivatives, J. of Inequalities and App., Vol. 2009, Article ID 162689, 8
pages
Year 2024,
Volume: 12 Issue: 1, 62 - 73, 30.04.2024
Samet Erden
,
Burçin Gökkurt Özdemir
,
Sevgi Kılıçer
,
Canmert Demır
References
- [1] Agli´c Aljinovi´c, A. (2014). Montgomery identity and Ostrowski type inequalities for Riemann-Liouville fractional integral. Journal of Mathematics,
Article ID 503195, 6 pages.
- [2] Anastassiou, G. (1995). Ostrowski type inequalities. Proc. of the American Math. Soc., 123 (12), 3775-378.
- [3] Barnett, N.S., & Dragomir, S.S. (2001). An Ostrowski type inequality for double integrals and applications for cubature formulae. Soochow J. Math.,
27(1), 1-10.
- [4] Budak H. and Sarikaya, M.Z.(2016). On Ostrowski type inequalities for functions of two variables with bounded variation, International Journal of
Analysis and Applications, 12 (2), 142-156.
- [5] Budak, H.; Sarikaya, M.Z. and Erden, S. (2016). New weighted Ostrowski type inequalities for mappings whose nth derivatives are of bounded variation,
International J. of Analysis and App., 12 (1), 71-79.
- [6] Budak, H. and Sarikaya, M.Z. (2016). A new Ostrowski type inequality for functions whose first derivatives are of bounded variation, Moroccan J. Pure
Appl. Anal., 2(1); 1–11.
- [7] Cerone, P.; Dragomir, S.S. and Roumeliotis, (1999). Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio
Math., 32 (4), 697-712.
- [8] Changjian, Z. and Cheung, W.S. (2010). On Ostrowski-type inequalities for heigher-order partial derivatives. Journal of Ineqaulities and Applications,
1-8.
- [9] Clarkson, J.A., Adams, C.R. (1933). On definitions of bounded variation for functions of two variables, Bull. Amer. Math. Soc. V.35 pp.824-854.
- [10] Dragomir, S.S. (2001). On the Ostrowski’s integral inequality for mappings with bounded variation and applications, Mathematical Inequalities &
Applications, 4 (1), 59–66.
- [11] Dragomir, S.S. and Wang, S. (1997). A new inequality of Ostrowski’s type in L1-norm and applications to some special means and to some numerical
quadrature rules. Tamkang J. of Math., 28(3), 239-244.
- [12] Dragomir, S. S. and Wang, A. (1998). A new inequality of Ostrowski’s type in Lp-norm and applications to some special means and to some numerical
quadrature rules. Indian Journal of Mathematics, 40(3), 299-304.
- [13] Dragomir, S. S., Barnett, N. S. and Cerone, P. (2003). An Ostrowski type inequality for double integrals in terms of Lp-norms and applications in
numerical integration. Anal. Num. Theor. Approx., 32(2), 161-169.
- [14] Dragomir, S. S. (2017). Ostrowski type inequalities for generalized Riemann Liouville fractional integrals of bounded variation. H¨older and Lipschitzian
functions. RGMIA Research Report Collection, 20, Article 48, 1-14.
- [15] Dragomir, S. S. (2017).Ostrowski Type inequalities for riemann-Liouville fractional integrals of absolutely continuous functions in terms of ¥norms.
RGMIA Research Report Collection, 20, Article 49, 1-14.
- [16] Dragomir, S. S. (2017). Ostrowski Type inequalities for riemann-Liouville fractional integrals of absolutely continuous functions in terms of pnorms.
RGMIA Research Report Collection, 20, Article 50.
- [17] Dragomir, S. S. (2020). Ostrowski and trapezoid type inequalities for Riemann-Liouville fractional integrals of absolutely continuous functions with
bounded derivatives. Fractional Differential Calculus, 10(2), 307-320.
- [18] Erden, S., Sarikaya, M. Z., and Budak, H. (2018). New weighted inequalities for higher order derivatives and applications. Filomat, 32(12), 4419-4433.
- [19] Erden, S., Budak, H., Sarikaya, M. Z., Iftikhar, S. and Kumam, P. (2020). Fractional Ostrowski type inequalities for bounded functions. Journal of
Inequalities and Applications, 123, 1-11.
- [20] Erden, S., Budak, H., and Sarikaya, M. Z. (2020). Fractional Ostrowski type inequalities for functions of bounded variaton with two variables. Miskolc
Mathematical Notes, 21(1), 171-188.
- [21] Erden, S. and Baskir, B. M. (2021). Improved results of perturbed inequalities for higher-order differentiable functions and their various applications.
Filomat, 35(10), 3475-3490.
- [22] Farid, G. (2017). Some new Ostrowski type inequalities via fractional integrals. International Journal of Analysis and Applications, 14(1), 64-68.
- [23] Fink, M. A. (1992). Bounds on the deviation of a function from its averages, Czechoslovak Mathematical Journal, 42 (117): 289-310.
- [24] Gorenflo, R. and Mainardi, F. (1997). Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien, 223-276.
- [25] Hanna, G., Dragomir, S. S. and Cerone, P. (2002). A general Ostrowski type inequality for double integrals, Tamkang Journal of Mathematics, 33 (4),
319-333
- [26] Kashif, A. R., Shoaib, M. and Latif, M. A. (2016). Improved version of perturbed Ostrowski type inequalities for n-times differentiable mappings with
three-step kernel and its application. J. Nonlinear Sci. Appl, 9, 3319-3332.
- [27] Lakoud, A. G. and Aissaoui, F. (2013). New fractional inequalities of Ostrowski type, Transylv. J. Math. Mech., 5(2), 103-106
- [28] Latif M.A. and Hussain, S. (2012). New inequalities of Ostrowski type for co-ordinated convex functions via fractional integrals, J Fractional Calc Appl.
2(9):1–15.
- [29] Ostrowski, A.M. (1938). U¨ ber die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv. 10, 226-227.
- [30] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego.
- [31] Qayyum, A., Shoaib, M. and Erden, S. (2019). Generalized fractional Ostrowski type inequality for higher order derivatives, New Trends in Mathematical
Sciences (NTMSCI), 4 (2), 111-124.
- [32] Qayyum, A.; Shoaib, M. and Faye, I. (2016). On new refinements and applications of efficient quadrature rules using n-times differentiable mappings,
RGMIA Research Report Collection, 19, Article 9, 22 pp.
- [33] Sarikaya, M. Z., Set, E., Yaldiz, H., and Bas¸ak, N. (2013). Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities.
Mathematical and Computer Modelling, 57(9-10), 2403-2407.
- [34] Sarıkaya, M. Z. (2014). On the Hermite–Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transforms and
Special Functions, 25(2), 134-147.
- [35] Sarikaya, M. Z. and Filiz, H. (2014). Note on the Ostrowski type inequalities for fractional integrals. Vietnam Journal of Mathematics, 42, 187-190.
- [36] Sarıkaya, M. Z. (2023). On the generalized Ostrowski type inequalities for co-ordinated convex functions. Filomat, 37(22), 7351-7366.
- [37] Sofo, A. (2002). Integral inequalities for n- times differentiable mappings, with multiple branches,on the Lp norm, Soochow Journal of Mathematics, 28
(2), 179-221.
- [38] Ujevi´c, N. (2003). Ostrowski-Gr¨uss type inequalities in two dimensional, J. of Ineq. in Pure and Appl. Math., 4 (5), article 101.
- [39] Wang M. and Zhao, X. (2009). Ostrowski type inequalities for higher-order derivatives, J. of Inequalities and App., Vol. 2009, Article ID 162689, 8
pages