Araştırma Makalesi
BibTex RIS Kaynak Göster

8 Katlı Yapının Dinamik Yükler Altında Titreşim Kontrolü

Yıl 2020, Cilt: 3 Sayı: 1, 65 - 76, 30.06.2020

Öz

Son yıllarda yapıların davranışını orta ve şiddetli depremler önemli ölçüde etkilemektedir. Sismik hareketler önceden nasıl olacağı tahmin edilemez ve doğa gereği önlenemez. Yapıların sismik tepkisini azaltmak amacıyla çeşitli yapısal kontrol sistemleri uygulanmaktadır. Aktif ayarlı kütle (TMD) ve pasif ayarlı kütle ( PTMD) sönümleyiciler yapıların göreli kat ötelemelerinin minimize edilmesi için kullanılmaktadır. Bu çalışmada 8 katlı betonarme bir yapının dinamik yüklerin oluşturduğu tepkileri azaltmak amacıyla pasif ayarlı kütle ( PTMD) ve aktif ayarlı kütle sistemleri (ATMD) ile kontrol sistemlerinin etkileri araştırılmıştır. Matlab makro kodlamayla yazılan analiz programı kullanılarak yürütülen simülasyon çalışmaları ile elde edilen sonuçlar tartışılmıştır. Sonuçlara göre yapı kat seviyelerindeki yer değiştirme ve ivme değerlerinin ATMD sisteminde sonuçların kat tepkilerini önemli ölçüde düşürürken, PTMD kat tepkilerini azaltmada daha az etkisi olmuştur.

Kaynakça

  • [1] Ormondroyd, J., and Den Hartog, J. P., (1928), "The theory of dynamic vibration absorber," Trans. ASME APM-50-7, pp. 9-22.
  • [2] Hancock Tower now to get dampers," (1975), Engineering News Record, Oct. 30, p. 11.
  • [3] "Tuned mass dampers steady sway of sky scrapers in wind," (1977), Engineering News Record, Aug. 18, p. 28-29.
  • [4] Webster A. C. and Vaicaitis R., (1992), "Application of tuned mass dampers to control vibrations of composite floor systems," Engineering 1., AISC, pp. 116-124.
  • [5] Yao, J.T.P., Concept of structural control. J. of Struct. Div., ASCE, 98(ST7), pp. 1567-1 574, 1972.
  • [6] Yang, J. N., Akbarpour, A. and Ghaemmaghami, P. (1987) New optimal control algorithms for structural control. Journalof Engineering Mechanics Division, Vol. 113, No. 9, pp. 1369-1386.
  • [7] Soong, T. T. (1990) Active Structural Control: Theory and Practice, 2nd edn., John Wiley.
  • [8] Goel, R. K. (1998). Effect supplementing viscous damping on seismic response of asymmetric-plan systems. Earthquake Engineering and Structural Dynamics. 27: 125-141.
  • [9] Miller, R.K. et al., Active vibration control of large civil structures, ASCE Journal of Engineering Mechanics, 114, 1542, 1988.
  • [10] Bauer, H.F., Oscillations of invincible liquids in a rectangular container: a new damper for excitated structures, Journal of Sound and Vibration, 93, 117, 1984.
  • [11] Pall, A.S. and Marsh, C., Response of friction damped braced frames, ASCE Journal of Structural Division, 108, 1313, 1982.
  • [12] Pall, A. et al., Friction dampers for seismic control of Canadian Space Agency headquarters, Earthquake Spectra, 9, 547, 1993.
  • [13] Matlab Release 2016a of MathWorks Inc., USA, 2016.
  • [14] Lin, W. H., and Chopra, A. K. (2003a). Asymmetric one-story elastic system with non-linear viscous and viscoelastic dampers: earthquake response. Earthquake Engineering and Structural Dynamics. 32: 555-577.
  • [15] Frahm, H. (1911). Device for damping of bodies, U.S. Patent, No. 989958.
  • [16] TBDY. (2018). Türkiye Bina Deprem Yönetmeliği. Ankara: Afet ve Acil Durum Yönetimi Başkanlığı.
  • [17] Yang, Y.B. and Huang, W.H., “Equipment Structure Interaction Considering the Effect of Torsion and Base Isolation”, Earthquake Engineering and Structural Dynamics, Cilt 27, 155-171, 1998.
  • [18] Jangid, R. S. and Datta, T. K. (1997). Performance of multiple tuned mass dampers for torsionally coupled system. Earthquake Engineering and Structural Dynamics (USA). 26, 307-317.
  • [19] Fallah, A.Y., and Taghikhany, T. (2013). "Time-Delayed Decentralized H2/LQG Controller for Cable-Stayed Bridge Under Seismic Loading." Structural Control and Health Monitoring, 20(3), 354-372.
  • [20] Li, Z., and Adeli, H. (2016). "New Discrete-time Robust H2/H∞ Algorithm for Vibration Control of Smart Structures using Linear Matrix Inequalities." Engineering Applications of Artificial Intelligence, 55: 47-57.
  • [21] Jiang, X., and Adeli, H. (2008a). "Dynamic Fuzzy Wavelet Neuroemulator for Nonlinear Control of Irregular High Rise Building Structures." International Journal for Numerical Methods in Engineering, 74 (7): 1045-66.
  • [22] Pujol, G., Acho, L., Pozo, F., Rodríguez, A. & Vıdal, Y. 2011. A velocity based active vibration control of hysteretic systems. Mechanical Systems and Signal Processing, 25, 465-474.
  • [23] Beyen, K., 2019. Hanging Wall and Footwall Effects in the Largest Reverse-Slip Earthquake of Turkey, October 23, 2011, M W 7.2 Van Earthquake. Arabian Journal for Science and Engineering, 44, 4757-4781.
  • [24] Beyen, K., Erdik, M., 2004. Two Dimensional Nonlinear Site Response Analysis of Adapazari Plain and Predictions Inferered From Aftershocks of The Kocaeli Earthquake, 17 August 1999, Soil Dynamics and Earthquake Engineering, 24 (2004) 261–279.
  • [25] Beyen, K., Tanırcan, G., 2015. Strong ground motion characteristics of the 2011 Van Earthquake of Turkey: Implications of seismological aspects on engineering parameters. Earthquakes and Structures, 8(6), 1363-1386.
Yıl 2020, Cilt: 3 Sayı: 1, 65 - 76, 30.06.2020

Öz

Kaynakça

  • [1] Ormondroyd, J., and Den Hartog, J. P., (1928), "The theory of dynamic vibration absorber," Trans. ASME APM-50-7, pp. 9-22.
  • [2] Hancock Tower now to get dampers," (1975), Engineering News Record, Oct. 30, p. 11.
  • [3] "Tuned mass dampers steady sway of sky scrapers in wind," (1977), Engineering News Record, Aug. 18, p. 28-29.
  • [4] Webster A. C. and Vaicaitis R., (1992), "Application of tuned mass dampers to control vibrations of composite floor systems," Engineering 1., AISC, pp. 116-124.
  • [5] Yao, J.T.P., Concept of structural control. J. of Struct. Div., ASCE, 98(ST7), pp. 1567-1 574, 1972.
  • [6] Yang, J. N., Akbarpour, A. and Ghaemmaghami, P. (1987) New optimal control algorithms for structural control. Journalof Engineering Mechanics Division, Vol. 113, No. 9, pp. 1369-1386.
  • [7] Soong, T. T. (1990) Active Structural Control: Theory and Practice, 2nd edn., John Wiley.
  • [8] Goel, R. K. (1998). Effect supplementing viscous damping on seismic response of asymmetric-plan systems. Earthquake Engineering and Structural Dynamics. 27: 125-141.
  • [9] Miller, R.K. et al., Active vibration control of large civil structures, ASCE Journal of Engineering Mechanics, 114, 1542, 1988.
  • [10] Bauer, H.F., Oscillations of invincible liquids in a rectangular container: a new damper for excitated structures, Journal of Sound and Vibration, 93, 117, 1984.
  • [11] Pall, A.S. and Marsh, C., Response of friction damped braced frames, ASCE Journal of Structural Division, 108, 1313, 1982.
  • [12] Pall, A. et al., Friction dampers for seismic control of Canadian Space Agency headquarters, Earthquake Spectra, 9, 547, 1993.
  • [13] Matlab Release 2016a of MathWorks Inc., USA, 2016.
  • [14] Lin, W. H., and Chopra, A. K. (2003a). Asymmetric one-story elastic system with non-linear viscous and viscoelastic dampers: earthquake response. Earthquake Engineering and Structural Dynamics. 32: 555-577.
  • [15] Frahm, H. (1911). Device for damping of bodies, U.S. Patent, No. 989958.
  • [16] TBDY. (2018). Türkiye Bina Deprem Yönetmeliği. Ankara: Afet ve Acil Durum Yönetimi Başkanlığı.
  • [17] Yang, Y.B. and Huang, W.H., “Equipment Structure Interaction Considering the Effect of Torsion and Base Isolation”, Earthquake Engineering and Structural Dynamics, Cilt 27, 155-171, 1998.
  • [18] Jangid, R. S. and Datta, T. K. (1997). Performance of multiple tuned mass dampers for torsionally coupled system. Earthquake Engineering and Structural Dynamics (USA). 26, 307-317.
  • [19] Fallah, A.Y., and Taghikhany, T. (2013). "Time-Delayed Decentralized H2/LQG Controller for Cable-Stayed Bridge Under Seismic Loading." Structural Control and Health Monitoring, 20(3), 354-372.
  • [20] Li, Z., and Adeli, H. (2016). "New Discrete-time Robust H2/H∞ Algorithm for Vibration Control of Smart Structures using Linear Matrix Inequalities." Engineering Applications of Artificial Intelligence, 55: 47-57.
  • [21] Jiang, X., and Adeli, H. (2008a). "Dynamic Fuzzy Wavelet Neuroemulator for Nonlinear Control of Irregular High Rise Building Structures." International Journal for Numerical Methods in Engineering, 74 (7): 1045-66.
  • [22] Pujol, G., Acho, L., Pozo, F., Rodríguez, A. & Vıdal, Y. 2011. A velocity based active vibration control of hysteretic systems. Mechanical Systems and Signal Processing, 25, 465-474.
  • [23] Beyen, K., 2019. Hanging Wall and Footwall Effects in the Largest Reverse-Slip Earthquake of Turkey, October 23, 2011, M W 7.2 Van Earthquake. Arabian Journal for Science and Engineering, 44, 4757-4781.
  • [24] Beyen, K., Erdik, M., 2004. Two Dimensional Nonlinear Site Response Analysis of Adapazari Plain and Predictions Inferered From Aftershocks of The Kocaeli Earthquake, 17 August 1999, Soil Dynamics and Earthquake Engineering, 24 (2004) 261–279.
  • [25] Beyen, K., Tanırcan, G., 2015. Strong ground motion characteristics of the 2011 Van Earthquake of Turkey: Implications of seismological aspects on engineering parameters. Earthquakes and Structures, 8(6), 1363-1386.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Makaleler
Yazarlar

Mürüvvet Batı 0000-0002-9370-0780

Kemal Beyen 0000-0001-8878-0985

Yayımlanma Tarihi 30 Haziran 2020
Kabul Tarihi 5 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 1

Kaynak Göster

APA Batı, M., & Beyen, K. (2020). 8 Katlı Yapının Dinamik Yükler Altında Titreşim Kontrolü. Kocaeli Üniversitesi Fen Bilimleri Dergisi, 3(1), 65-76.