Research Article
BibTex RIS Cite

Year 2025, Volume: 65 Issue: 1, 33 - 39, 30.06.2025
https://doi.org/10.46897/livestockstudies.1728916

Abstract

References

  • Arzik, Y. et al. (2022) ‘Genomic Analysis of Gastrointestinal Parasite Resistance in Akkaraman Sheep’, Genes. Multidisciplinary Digital Publishing Institute, 13(12), p. 2177.
  • Arzik, Y. et al. (2025) ‘Exploring Genetic Factors Associated with Moniezia spp. Tapeworm Resistance in Central Anatolian Merino Sheep via GWAS Approach.’, Animals : an open access journal from MDPI. Switzerland, 15(6). doi: 10.3390/ani15060812.
  • Astle, W. and Balding, D. J. (2009) ‘Population Structure and Cryptic Relatedness in Genetic Association Studies’, Statistical Science, 24(4), pp. 451–471. doi: 10.1214/09-STS307.
  • Aulchenko, Y. S. et al. (2007) ‘GenABEL: an R library for genome-wide association analysis’, Bioinformatics, 23(10), pp. 1294–1296. doi: 10.1093/bioinformatics/btm108.
  • Behrem, S. and Gül, S. (2022) ‘Effects of age and body region on wool characteristics of Merino sheep crossbreds in Turkey’, Turkish Journal of Veterinary & Animal Sciences, 46(2), pp. 235–247.
  • Bishop, S. C. and Morris, C. A. (2007) ‘Genetics of disease resistance in sheep and goats’, Small Ruminant Research, 70(1), pp. 48–59. doi: https://doi.org/10.1016/j.smallrumres.2007.01.006.
  • Chen, P. et al. (2025) ‘Exploring the interplay between Eimeria spp. infection and the host: understanding the dynamics of gut barrier function’, Veterinary Quarterly. Taylor & Francis, 45(1), pp. 1–22.
  • Devlin, B. and Roeder, K. (1999) ‘Genomic control for association studies’, Biometrics, 55(4), pp. 997–1004. doi: 10.1111/j.0006-341X.1999.00997.x.
  • Dutto, I. et al. (2015) ‘Biology of the cell cycle inhibitor p21CDKN1A: molecular mechanisms and relevance in chemical toxicology’, Archives of Toxicology, 89(2), pp. 155–178. doi: 10.1007/s00204-014-1430-4.
  • Gul, S. et al. (2023) ‘Heritability and environmental influence on pre-weaning traits in Kilis goats’, Tropical Animal Health and Production. Springer, 55(2), p. 85.
  • Gül, S. et al. (2016) ‘Effects of supplemental feeding on performance of Kilis goats kept on pasture condition’, Italian Journal of Animal Science. Taylor and Francis Ltd., 15(1), pp. 110–115. doi: 10.1080/1828051X.2015.1132542.
  • Gül, S. et al. (2020) ‘Effects of different lambing season on some reproductive characteristics of ewes and growth performance of lambs in Awassi sheep’, Lalahan Hayvancılık Araştırma Enstitüsü Dergisi, 60(1), pp. 32–36. doi: 10.46897/lahaed.779729.
  • GÜL, S. et al. (2020) ‘Effects of different lambing season on some reproductive characteristics of ewes and growth performance of lambs in Awassi sheep’, Lalahan Hayvancılık Araştırma Enstitüsü Dergisi, 60(1), pp. 32–36. doi: 10.46897/lahaed.779729.
  • Hayward, A. D. (2022) ‘Genetic parameters for resistance to gastrointestinal nematodes in sheep: a meta-analysis’, International Journal for Parasitology. Elsevier, 52(13–14), pp. 843–853.
  • Herman, A. B. and Autieri, M. V (2017) ‘Inflammation-regulated mRNA stability and the progression of vascular inflammatory diseases’, Clinical Science. Portland Press Ltd., 131(22), pp. 2687–2699.
  • Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2009) ‘Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists.’, Nucleic acids research, 37(1), pp. 1–13. doi: 10.1093/nar/gkn923.
  • Jäger, A. V et al. (2014) ‘Identification of novel cyclic nucleotide binding proteins in Trypanosoma cruzi’, Molecular and Biochemical Parasitology, 198(2), pp. 104–112. doi: https://doi.org/10.1016/j.molbiopara.2015.02.002.
  • Kadowaki, T. et al. (2020) ‘The large GTPase Rab44 regulates granule exocytosis in mast cells and IgE-mediated anaphylaxis.’, Cellular & molecular immunology. China, pp. 1287–1289. doi: 10.1038/s41423-020-0413-z.
  • Karshima, S. N. (2018) ‘Vectors and vector-borne pathogens of dogs in Nigeria: a meta-analysis of their prevalence and distribution from data published between 1975 and 2016’, Veterinary Parasitology: Regional Studies and Reports, 12, pp. 69–77. doi: https://doi.org/10.1016/j.vprsr.2018.02.002.
  • Liu, M. et al. (2024) ‘Epidemiological characteristics and prevention and control strategies for Eimeria spp. in sheep and goats in China: a systematic review’, Animal Diseases, 4(1), p. 48. doi: 10.1186/s44149-024-00151-w.
  • McGuckin, M. A. et al. (2011) ‘Mucin dynamics and enteric pathogens’, Nature Reviews Microbiology. Nature Publishing Group, 9(4), pp. 265–278.
  • Meningher, T. et al. (2020) ‘Schistosomal extracellular vesicle‐enclosed miRNAs modulate host T helper cell differentiation’, EMBO reports, 21(1), pp. 1–17. doi: 10.15252/embr.201947882.
  • Moreno‐Corona, N. C. et al. (2024) ‘Rab GTPases, Active Members in Antigen‐Presenting Cells, and T Lymphocytes’, Traffic. Wiley Online Library, 25(6), p. e12950.
  • Noguromi, M. et al. (2023) ‘Rab44 Deficiency Induces Impaired Immune Responses to Nickel Allergy’, International Journal of Molecular Sciences. doi: 10.3390/ijms24020994.
  • Okuhira, K. et al. (2011) ‘Specific degradation of CRABP-II via cIAP1-mediated ubiquitylation induced by hybrid molecules that crosslink cIAP1 and the target protein’, FEBS letters. Elsevier, 585(8), pp. 1147–1152.
  • Rangwala, S. H. et al. (2021) ‘Accessing NCBI data using the NCBI Sequence Viewer and Genome Data Viewer (GDV)’, Genome Research. Cold Spring Harbor Lab, 31(1), pp. 159–169.
  • Reeg, K. J. et al. (2005) ‘Coccidial infections in housed lambs: oocyst excretion, antibody levels and genetic influences on the infection’, Veterinary Parasitology, 127(3), pp. 209–219. doi: https://doi.org/10.1016/j.vetpar.2004.10.018.
  • Riva, E. (2024) ‘Study of the immunological landscape in Myelodysplastic Syndromes: a multi-omics approach’. Università degli Studi di Milano-Bicocca.
  • Russwurm, C., Koesling, D. and Russwurm, M. (2015) ‘Phosphodiesterase 10A Is Tethered to a Synaptic Signaling Complex in Striatum * ’, Journal of Biological Chemistry. Elsevier, 290(19), pp. 11936–11947. doi: 10.1074/jbc.M114.595769.
  • Sabri, G. Ü. L. et al. (2018) ‘Effects of Pre-milking Resting on Some Lactation Characteristics of Damascus (Shami) and Kilis Goats’, Hayvansal Üretim, 59(1), pp. 17–24.
  • Stenmark, H. (2009) ‘Rab GTPases as coordinators of vesicle traffic’, Nature Reviews Molecular Cell Biology, 10(8), pp. 513–525. doi: 10.1038/nrm2728.
  • Sun, S. et al. (2022) ‘The interaction between E3 ubiquitin ligase Parkin and mitophagy receptor PHB2 links inner mitochondrial membrane ubiquitination to efficient mitophagy’, Journal of Biological Chemistry, 298(12), p. 102704. doi: https://doi.org/10.1016/j.jbc.2022.102704.
  • Windon, R. G., Dineen, J. K. and Wagland, B. M. (1987) ‘Genetic control of immunological responsiveness against the intestinal nematode Trichostrongylus colubriformis in lambs.’ Melbourne, Vic, Australian Wool Corporation.
  • Zhu, S. et al. (2020) ‘Genome-Wide Association Study Using Individual Single-Nucleotide Polymorphisms and Haplotypes for Erythrocyte Traits in Alpine Merino Sheep’, Frontiers in Genetics, 11(July). doi: 10.3389/fgene.2020.00848.
  • Zilocchi, M. et al. (2020) ‘Exploring the Impact of PARK2 Mutations on the Total and Mitochondrial Proteome of Human Skin Fibroblasts’, Frontiers in Cell and Developmental Biology, 8(June), pp. 1–16. doi: 10.3389/fcell.2020.00423

Identification of Candidate Genes Associated with Eimeria spp. Oocyst Load in Central Anatolian Merino Sheep

Year 2025, Volume: 65 Issue: 1, 33 - 39, 30.06.2025
https://doi.org/10.46897/livestockstudies.1728916

Abstract

Coccidiosis caused by Eimeria spp. is a significant protozoal disease impacting the health and productivity of sheep and other livestock species. Host resistance to coccidiosis exhibits considerable individual variation, suggesting a genetic basis for susceptibility and resilience. This study aimed to identify genomic regions associated with oocyst load of Eimeria spp. in sheep using a genome-wide association study (GWAS) approach. A total of 226 sheep were phenotyped for oocyst counts using a standardized flotation technique. Genotyping was performed using a 50 K high-density SNP array. Quality control measures included filtering for minor allele frequency, call rate, and Hardy-Weinberg equilibrium. GWAS analysis was conducted using a mixed linear model accounting for relatedness among individuals. Significant associations were identified on chromosomes 1, 8 and 20. Candidate genes mapped to these regions included PARK2, PACRG, QKI, PDE10A, RAB44, and CDKN1A, which are involved in mitochondrial quality control, cellular stress response, immune modulation, and epithelial integrity maintenance. These biological functions are critical for host defence mechanisms against protozoal infections such as coccidiosis. This study reveals novel candidate genes and biological pathways potentially influencing coccidial oocyst load in sheep. These findings contribute to the understanding of host genetic resistance to Eimeria infections and may inform future breeding strategies in sheep.

References

  • Arzik, Y. et al. (2022) ‘Genomic Analysis of Gastrointestinal Parasite Resistance in Akkaraman Sheep’, Genes. Multidisciplinary Digital Publishing Institute, 13(12), p. 2177.
  • Arzik, Y. et al. (2025) ‘Exploring Genetic Factors Associated with Moniezia spp. Tapeworm Resistance in Central Anatolian Merino Sheep via GWAS Approach.’, Animals : an open access journal from MDPI. Switzerland, 15(6). doi: 10.3390/ani15060812.
  • Astle, W. and Balding, D. J. (2009) ‘Population Structure and Cryptic Relatedness in Genetic Association Studies’, Statistical Science, 24(4), pp. 451–471. doi: 10.1214/09-STS307.
  • Aulchenko, Y. S. et al. (2007) ‘GenABEL: an R library for genome-wide association analysis’, Bioinformatics, 23(10), pp. 1294–1296. doi: 10.1093/bioinformatics/btm108.
  • Behrem, S. and Gül, S. (2022) ‘Effects of age and body region on wool characteristics of Merino sheep crossbreds in Turkey’, Turkish Journal of Veterinary & Animal Sciences, 46(2), pp. 235–247.
  • Bishop, S. C. and Morris, C. A. (2007) ‘Genetics of disease resistance in sheep and goats’, Small Ruminant Research, 70(1), pp. 48–59. doi: https://doi.org/10.1016/j.smallrumres.2007.01.006.
  • Chen, P. et al. (2025) ‘Exploring the interplay between Eimeria spp. infection and the host: understanding the dynamics of gut barrier function’, Veterinary Quarterly. Taylor & Francis, 45(1), pp. 1–22.
  • Devlin, B. and Roeder, K. (1999) ‘Genomic control for association studies’, Biometrics, 55(4), pp. 997–1004. doi: 10.1111/j.0006-341X.1999.00997.x.
  • Dutto, I. et al. (2015) ‘Biology of the cell cycle inhibitor p21CDKN1A: molecular mechanisms and relevance in chemical toxicology’, Archives of Toxicology, 89(2), pp. 155–178. doi: 10.1007/s00204-014-1430-4.
  • Gul, S. et al. (2023) ‘Heritability and environmental influence on pre-weaning traits in Kilis goats’, Tropical Animal Health and Production. Springer, 55(2), p. 85.
  • Gül, S. et al. (2016) ‘Effects of supplemental feeding on performance of Kilis goats kept on pasture condition’, Italian Journal of Animal Science. Taylor and Francis Ltd., 15(1), pp. 110–115. doi: 10.1080/1828051X.2015.1132542.
  • Gül, S. et al. (2020) ‘Effects of different lambing season on some reproductive characteristics of ewes and growth performance of lambs in Awassi sheep’, Lalahan Hayvancılık Araştırma Enstitüsü Dergisi, 60(1), pp. 32–36. doi: 10.46897/lahaed.779729.
  • GÜL, S. et al. (2020) ‘Effects of different lambing season on some reproductive characteristics of ewes and growth performance of lambs in Awassi sheep’, Lalahan Hayvancılık Araştırma Enstitüsü Dergisi, 60(1), pp. 32–36. doi: 10.46897/lahaed.779729.
  • Hayward, A. D. (2022) ‘Genetic parameters for resistance to gastrointestinal nematodes in sheep: a meta-analysis’, International Journal for Parasitology. Elsevier, 52(13–14), pp. 843–853.
  • Herman, A. B. and Autieri, M. V (2017) ‘Inflammation-regulated mRNA stability and the progression of vascular inflammatory diseases’, Clinical Science. Portland Press Ltd., 131(22), pp. 2687–2699.
  • Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2009) ‘Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists.’, Nucleic acids research, 37(1), pp. 1–13. doi: 10.1093/nar/gkn923.
  • Jäger, A. V et al. (2014) ‘Identification of novel cyclic nucleotide binding proteins in Trypanosoma cruzi’, Molecular and Biochemical Parasitology, 198(2), pp. 104–112. doi: https://doi.org/10.1016/j.molbiopara.2015.02.002.
  • Kadowaki, T. et al. (2020) ‘The large GTPase Rab44 regulates granule exocytosis in mast cells and IgE-mediated anaphylaxis.’, Cellular & molecular immunology. China, pp. 1287–1289. doi: 10.1038/s41423-020-0413-z.
  • Karshima, S. N. (2018) ‘Vectors and vector-borne pathogens of dogs in Nigeria: a meta-analysis of their prevalence and distribution from data published between 1975 and 2016’, Veterinary Parasitology: Regional Studies and Reports, 12, pp. 69–77. doi: https://doi.org/10.1016/j.vprsr.2018.02.002.
  • Liu, M. et al. (2024) ‘Epidemiological characteristics and prevention and control strategies for Eimeria spp. in sheep and goats in China: a systematic review’, Animal Diseases, 4(1), p. 48. doi: 10.1186/s44149-024-00151-w.
  • McGuckin, M. A. et al. (2011) ‘Mucin dynamics and enteric pathogens’, Nature Reviews Microbiology. Nature Publishing Group, 9(4), pp. 265–278.
  • Meningher, T. et al. (2020) ‘Schistosomal extracellular vesicle‐enclosed miRNAs modulate host T helper cell differentiation’, EMBO reports, 21(1), pp. 1–17. doi: 10.15252/embr.201947882.
  • Moreno‐Corona, N. C. et al. (2024) ‘Rab GTPases, Active Members in Antigen‐Presenting Cells, and T Lymphocytes’, Traffic. Wiley Online Library, 25(6), p. e12950.
  • Noguromi, M. et al. (2023) ‘Rab44 Deficiency Induces Impaired Immune Responses to Nickel Allergy’, International Journal of Molecular Sciences. doi: 10.3390/ijms24020994.
  • Okuhira, K. et al. (2011) ‘Specific degradation of CRABP-II via cIAP1-mediated ubiquitylation induced by hybrid molecules that crosslink cIAP1 and the target protein’, FEBS letters. Elsevier, 585(8), pp. 1147–1152.
  • Rangwala, S. H. et al. (2021) ‘Accessing NCBI data using the NCBI Sequence Viewer and Genome Data Viewer (GDV)’, Genome Research. Cold Spring Harbor Lab, 31(1), pp. 159–169.
  • Reeg, K. J. et al. (2005) ‘Coccidial infections in housed lambs: oocyst excretion, antibody levels and genetic influences on the infection’, Veterinary Parasitology, 127(3), pp. 209–219. doi: https://doi.org/10.1016/j.vetpar.2004.10.018.
  • Riva, E. (2024) ‘Study of the immunological landscape in Myelodysplastic Syndromes: a multi-omics approach’. Università degli Studi di Milano-Bicocca.
  • Russwurm, C., Koesling, D. and Russwurm, M. (2015) ‘Phosphodiesterase 10A Is Tethered to a Synaptic Signaling Complex in Striatum * ’, Journal of Biological Chemistry. Elsevier, 290(19), pp. 11936–11947. doi: 10.1074/jbc.M114.595769.
  • Sabri, G. Ü. L. et al. (2018) ‘Effects of Pre-milking Resting on Some Lactation Characteristics of Damascus (Shami) and Kilis Goats’, Hayvansal Üretim, 59(1), pp. 17–24.
  • Stenmark, H. (2009) ‘Rab GTPases as coordinators of vesicle traffic’, Nature Reviews Molecular Cell Biology, 10(8), pp. 513–525. doi: 10.1038/nrm2728.
  • Sun, S. et al. (2022) ‘The interaction between E3 ubiquitin ligase Parkin and mitophagy receptor PHB2 links inner mitochondrial membrane ubiquitination to efficient mitophagy’, Journal of Biological Chemistry, 298(12), p. 102704. doi: https://doi.org/10.1016/j.jbc.2022.102704.
  • Windon, R. G., Dineen, J. K. and Wagland, B. M. (1987) ‘Genetic control of immunological responsiveness against the intestinal nematode Trichostrongylus colubriformis in lambs.’ Melbourne, Vic, Australian Wool Corporation.
  • Zhu, S. et al. (2020) ‘Genome-Wide Association Study Using Individual Single-Nucleotide Polymorphisms and Haplotypes for Erythrocyte Traits in Alpine Merino Sheep’, Frontiers in Genetics, 11(July). doi: 10.3389/fgene.2020.00848.
  • Zilocchi, M. et al. (2020) ‘Exploring the Impact of PARK2 Mutations on the Total and Mitochondrial Proteome of Human Skin Fibroblasts’, Frontiers in Cell and Developmental Biology, 8(June), pp. 1–16. doi: 10.3389/fcell.2020.00423
There are 35 citations in total.

Details

Primary Language English
Subjects Zootechny (Other)
Journal Section 65-1
Authors

Yunus Arzık 0000-0002-3068-8155

Mehmet Kızılaslan 0000-0001-6305-8742

Sedat Behrem 0000-0002-7351-1229

Mehmet Ulaş Çınar 0000-0001-5894-5072

Early Pub Date June 27, 2025
Publication Date June 30, 2025
Submission Date May 7, 2025
Acceptance Date June 17, 2025
Published in Issue Year 2025 Volume: 65 Issue: 1

Cite

APA Arzık, Y., Kızılaslan, M., Behrem, S., Çınar, M. U. (2025). Identification of Candidate Genes Associated with Eimeria spp. Oocyst Load in Central Anatolian Merino Sheep. Livestock Studies, 65(1), 33-39. https://doi.org/10.46897/livestockstudies.1728916
AMA Arzık Y, Kızılaslan M, Behrem S, Çınar MU. Identification of Candidate Genes Associated with Eimeria spp. Oocyst Load in Central Anatolian Merino Sheep. Livestock Studies. June 2025;65(1):33-39. doi:10.46897/livestockstudies.1728916
Chicago Arzık, Yunus, Mehmet Kızılaslan, Sedat Behrem, and Mehmet Ulaş Çınar. “Identification of Candidate Genes Associated With Eimeria Spp. Oocyst Load in Central Anatolian Merino Sheep”. Livestock Studies 65, no. 1 (June 2025): 33-39. https://doi.org/10.46897/livestockstudies.1728916.
EndNote Arzık Y, Kızılaslan M, Behrem S, Çınar MU (June 1, 2025) Identification of Candidate Genes Associated with Eimeria spp. Oocyst Load in Central Anatolian Merino Sheep. Livestock Studies 65 1 33–39.
IEEE Y. Arzık, M. Kızılaslan, S. Behrem, and M. U. Çınar, “Identification of Candidate Genes Associated with Eimeria spp. Oocyst Load in Central Anatolian Merino Sheep”, Livestock Studies, vol. 65, no. 1, pp. 33–39, 2025, doi: 10.46897/livestockstudies.1728916.
ISNAD Arzık, Yunus et al. “Identification of Candidate Genes Associated With Eimeria Spp. Oocyst Load in Central Anatolian Merino Sheep”. Livestock Studies 65/1 (June2025), 33-39. https://doi.org/10.46897/livestockstudies.1728916.
JAMA Arzık Y, Kızılaslan M, Behrem S, Çınar MU. Identification of Candidate Genes Associated with Eimeria spp. Oocyst Load in Central Anatolian Merino Sheep. Livestock Studies. 2025;65:33–39.
MLA Arzık, Yunus et al. “Identification of Candidate Genes Associated With Eimeria Spp. Oocyst Load in Central Anatolian Merino Sheep”. Livestock Studies, vol. 65, no. 1, 2025, pp. 33-39, doi:10.46897/livestockstudies.1728916.
Vancouver Arzık Y, Kızılaslan M, Behrem S, Çınar MU. Identification of Candidate Genes Associated with Eimeria spp. Oocyst Load in Central Anatolian Merino Sheep. Livestock Studies. 2025;65(1):33-9.