Research Article
BibTex RIS Cite
Year 2021, Volume: 10 Issue: 4, 333 - 339, 29.12.2021
https://doi.org/10.33714/masteb.951265

Abstract

References

  • Acinas, S. G., Haverkamp, T. H. A., Huisman, J., & Stal, L. J. (2009). Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria). ISME Journal, 3(1), 31–46. https://doi.org/10.1038/ismej.2008.78
  • Behle, A. (2019). Recipe for standard BG-11 media. https://doi.org/10.17504/PROTOCOLS.IO.7KMHKU6
  • Bennett, A., & Bogobad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2), 419–435. https://doi.org/10.1083/jcb.58.2.419
  • Cano-Europa, E., Ortiz-Butrón, R., Gallardo-Casas, C. A., Blas-Valdivia, V., Pineda-Reynoso, M., Olvera-Ramírez, R., & Franco-Colin, M. (2010). Phycobiliproteins from Pseudanabaena tenuis rich in c-phycoerythrin protect against HgCl2-caused oxidative stress and cellular damage in the kidney. Journal of Applied Phycology, 22(4), 495–501. https://doi.org/10.1007/s10811-009-9484-z
  • Centre for Proteome Research, Liverpool. (n.d.). Buffer calculator. from https://www.liverpool.ac.uk/pfg/Research/Tools/BuffferCalc/Buffer.html
  • Eriksen, N. T. (2008). Production of phycocyanin - A pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1), 1–14. https://doi.org/10.1007/s00253-008-1542-y
  • Ferraro, G., Imbimbo, P., Marseglia, A., Illiano, A., Fontanarosa, C., Amoresano, A., Olivieri, G., Pollio, A., Monti, D. M., & Merlino, A. (2020). A thermophilic C-phycocyanin with unprecedented biophysical and biochemical properties. International Journal of Biological Macromolecules, 150, 38–51. https://doi.org/10.1016/j.ijbiomac.2020.02.045
  • Furuki, T., Maeda, S., Imajo, S., Hiroi, T., Amaya, T., Hirokawa, T., Ito, K., & Nozawa, H. (2003). Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic cell disruption. Journal of Applied Phycology, 15(4), 319–324. https://doi.org/10.1023/A:1025118516888
  • Günerken, E., D’Hondt, E., Eppink, M. H. M., Garcia-Gonzalez, L., Elst, K., & Wijffels, R. H. (2015). Cell disruption for microalgae biorefineries. Biotechnology Advances, 33(2), 243–260. https://doi.org/10.1016/j.biotechadv.2015.01.008
  • Güroy, B., Karadal, O., Mantoğlu, S., & Cebeci, I. O. (2017). Effects of different drying methods on C-phycocyanin content of Spirulina platensis powder. Ege Journal of Fisheries and Aquatic Sciences, 34(2), 129–132. https://doi.org/10.12714/egejfas.2017.34.2.02
  • Hsieh-Lo, M., Castillo, G., Ochoa-Becerra, M. A., & Mojica, L. (2019). Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability. Algal Research, 42, 101600. https://doi.org/10.1016/j.algal.2019.101600
  • İlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70, 78–88. https://doi.org/10.1016/j.jfca.2018.04.007
  • Khan, Z., Wan Maznah, W. O., Faradina Merican, M. S. M., Convey, P., Najimudin, N., & Alias, S. A. (2019). A comparative study of phycobilliprotein production in two strains of Pseudanabaena isolated from Arctic and tropical regions in relation to different light wavelengths and photoperiods. Polar Science, 20, 3–8. https://doi.org/10.1016/j.polar.2018.10.002
  • Klepacz-Smółka, A., Pietrzyk, D., Szeląg, R., Głuszcz, P., Daroch, M., Tang, J., & Ledakowicz, S. (2020). Effect of light colour and photoperiod on biomass growth and phycocyanin production by Synechococcus PCC 6715. Bioresource Technology, 313. https://doi.org/10.1016/j.biortech.2020.123700
  • Lee, A. K., Lewis, D. M., & Ashman, P. J. (2012). Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy, 46, 89–101. https://doi.org/10.1016/j.biombioe.2012.06.034
  • Leu, J. Y., Lin, T. H., Selvamani, M. J. P., Chen, H. C., Liang, J. Z., & Pan, K. M. (2013). Characterization of a novel thermophilic cyanobacterial strain from Taian hot springs in Taiwan for high CO2 mitigation and C-phycocyanin extraction. Process Biochemistry, 48(1), 41–48. https://doi.org/10.1016/j.procbio.2012.09.019
  • Liang, Y., Kaczmarek, M. B., Kasprzak, A. K., Tang, J., Shah, M. M. R., Jin, P., Klepacz-Smółka, A., Cheng, J. J., Ledakowicz, S., & Daroch, M. (2018). Thermosynechococcaceae as a source of thermostable C-phycocyanins: Properties and molecular insights. Algal Research, 35, 223–235. https://doi.org/10.1016/j.algal.2018.08.037
  • Liang, Y., Tang, J., Luo, Y., Kaczmarek, M. B., Li, X., & Daroch, M. (2019). Thermosynechococcus as a thermophilic photosynthetic microbial cell factory for CO2 utilisation. Bioresource Technology, 278, 255–265. https://doi.org/10.1016/j.biortech.2019.01.089
  • Lima, G. M., Teixeira, P. C. N., Teixeira, C. M. L. L., Filócomo, D., & Lage, C. L. S. (2018). Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis. Algal Research, 31, 157–166. https://doi.org/10.1016/j.algal.2018.02.012
  • Pan-utai, W., & Iamtham, S. (2019). Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochemistry, 82, 189–198. https://doi.org/10.1016/j.procbio.2019.04.014
  • Phong, W. N., Show, P. L., Ling, T. C., Juan, J. C., Ng, E. P., & Chang, J. S. (2018). Mild cell disruption methods for bio-functional proteins recovery from microalgae—Recent developments and future perspectives. Algal Research, 31, 506–516. https://doi.org/10.1016/j.algal.2017.04.005
  • Prates, D. da F., Radmann, E. M., Duarte, J. H., Morais, M. G. de, & Costa, J. A. V. (2018). Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology, 256, 38–43. https://doi.org/10.1016/j.biortech.2018.01.122
  • Puzorjov, A., & McCormick, A. J. (2020). Phycobiliproteins from extreme environments and their potential applications. Journal of Experimental Botany, 71(13), 3827–3842. https://doi.org/10.1093/jxb/eraa139
  • Safi, C., Ursu, A. V., Laroche, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research, 3(1), 61–65. https://doi.org/10.1016/j.algal.2013.12.004
  • Tamburaci, S. (2009). Termal sudan i̇ zole ed i̇ len pseudanabaena sp. su ş unun üret i̇ m ko ş ullarinin opt i̇ m i̇ zasyonu. 106.
  • Tavanandi, H. A., & Raghavarao, K. S. M. S. (2019). Recovery of chlorophylls from spent biomass of Arthrospira platensis obtained after extraction of phycobiliproteins. Bioresource Technology, 271, 391–401. https://doi.org/10.1016/j.biortech.2018.09.141
  • Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry, 8(3), 303–313. https://doi.org/10.1016/S1350-4177(01)00071-2

Phycocyanin Extraction From Frozen and Freeze-Dried Biomass of Pseudanabaena sp. by Using Mild Cell Disruption Methods

Year 2021, Volume: 10 Issue: 4, 333 - 339, 29.12.2021
https://doi.org/10.33714/masteb.951265

Abstract

Phycocyanin is a precious, natural, blue coloured pigment-protein complex that has commercial value and wide application in cosmetics, food, and pharmaceutical industries. In the present study, we performed various cell disruption methods (ultrasonication, homogenization, freeze/thaw and CaCl2 extraction) for phycocyanin extraction from different forms of biomass of a thermophilic Pseudanabaena sp. that has a high potential to produce high-quality phycocyanin. Using potassium phosphate buffer and ultrasonic bath method, we achieved the highest phycocyanin yield (345 mgPC.g-biomass) from freeze-dried biomass and we obtained increased yield as the duration of application increases. Phycocyanin yields were calculated as 345 mgPC.g-biomass, 255 mgPC.g-biomass and 220 mgPC.g-biomass for 5, 10 and 15 min, respectively. In this study, cell disruption methods have determined significantly more effective on freeze-dried biomass rather than frozen biomass. Phycocyanin content of freeze-dried biomass was analysed after six months of storage and dramatic decrement was observed in the phycocyanin content of the cells.

References

  • Acinas, S. G., Haverkamp, T. H. A., Huisman, J., & Stal, L. J. (2009). Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria). ISME Journal, 3(1), 31–46. https://doi.org/10.1038/ismej.2008.78
  • Behle, A. (2019). Recipe for standard BG-11 media. https://doi.org/10.17504/PROTOCOLS.IO.7KMHKU6
  • Bennett, A., & Bogobad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2), 419–435. https://doi.org/10.1083/jcb.58.2.419
  • Cano-Europa, E., Ortiz-Butrón, R., Gallardo-Casas, C. A., Blas-Valdivia, V., Pineda-Reynoso, M., Olvera-Ramírez, R., & Franco-Colin, M. (2010). Phycobiliproteins from Pseudanabaena tenuis rich in c-phycoerythrin protect against HgCl2-caused oxidative stress and cellular damage in the kidney. Journal of Applied Phycology, 22(4), 495–501. https://doi.org/10.1007/s10811-009-9484-z
  • Centre for Proteome Research, Liverpool. (n.d.). Buffer calculator. from https://www.liverpool.ac.uk/pfg/Research/Tools/BuffferCalc/Buffer.html
  • Eriksen, N. T. (2008). Production of phycocyanin - A pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1), 1–14. https://doi.org/10.1007/s00253-008-1542-y
  • Ferraro, G., Imbimbo, P., Marseglia, A., Illiano, A., Fontanarosa, C., Amoresano, A., Olivieri, G., Pollio, A., Monti, D. M., & Merlino, A. (2020). A thermophilic C-phycocyanin with unprecedented biophysical and biochemical properties. International Journal of Biological Macromolecules, 150, 38–51. https://doi.org/10.1016/j.ijbiomac.2020.02.045
  • Furuki, T., Maeda, S., Imajo, S., Hiroi, T., Amaya, T., Hirokawa, T., Ito, K., & Nozawa, H. (2003). Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic cell disruption. Journal of Applied Phycology, 15(4), 319–324. https://doi.org/10.1023/A:1025118516888
  • Günerken, E., D’Hondt, E., Eppink, M. H. M., Garcia-Gonzalez, L., Elst, K., & Wijffels, R. H. (2015). Cell disruption for microalgae biorefineries. Biotechnology Advances, 33(2), 243–260. https://doi.org/10.1016/j.biotechadv.2015.01.008
  • Güroy, B., Karadal, O., Mantoğlu, S., & Cebeci, I. O. (2017). Effects of different drying methods on C-phycocyanin content of Spirulina platensis powder. Ege Journal of Fisheries and Aquatic Sciences, 34(2), 129–132. https://doi.org/10.12714/egejfas.2017.34.2.02
  • Hsieh-Lo, M., Castillo, G., Ochoa-Becerra, M. A., & Mojica, L. (2019). Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability. Algal Research, 42, 101600. https://doi.org/10.1016/j.algal.2019.101600
  • İlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70, 78–88. https://doi.org/10.1016/j.jfca.2018.04.007
  • Khan, Z., Wan Maznah, W. O., Faradina Merican, M. S. M., Convey, P., Najimudin, N., & Alias, S. A. (2019). A comparative study of phycobilliprotein production in two strains of Pseudanabaena isolated from Arctic and tropical regions in relation to different light wavelengths and photoperiods. Polar Science, 20, 3–8. https://doi.org/10.1016/j.polar.2018.10.002
  • Klepacz-Smółka, A., Pietrzyk, D., Szeląg, R., Głuszcz, P., Daroch, M., Tang, J., & Ledakowicz, S. (2020). Effect of light colour and photoperiod on biomass growth and phycocyanin production by Synechococcus PCC 6715. Bioresource Technology, 313. https://doi.org/10.1016/j.biortech.2020.123700
  • Lee, A. K., Lewis, D. M., & Ashman, P. J. (2012). Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy, 46, 89–101. https://doi.org/10.1016/j.biombioe.2012.06.034
  • Leu, J. Y., Lin, T. H., Selvamani, M. J. P., Chen, H. C., Liang, J. Z., & Pan, K. M. (2013). Characterization of a novel thermophilic cyanobacterial strain from Taian hot springs in Taiwan for high CO2 mitigation and C-phycocyanin extraction. Process Biochemistry, 48(1), 41–48. https://doi.org/10.1016/j.procbio.2012.09.019
  • Liang, Y., Kaczmarek, M. B., Kasprzak, A. K., Tang, J., Shah, M. M. R., Jin, P., Klepacz-Smółka, A., Cheng, J. J., Ledakowicz, S., & Daroch, M. (2018). Thermosynechococcaceae as a source of thermostable C-phycocyanins: Properties and molecular insights. Algal Research, 35, 223–235. https://doi.org/10.1016/j.algal.2018.08.037
  • Liang, Y., Tang, J., Luo, Y., Kaczmarek, M. B., Li, X., & Daroch, M. (2019). Thermosynechococcus as a thermophilic photosynthetic microbial cell factory for CO2 utilisation. Bioresource Technology, 278, 255–265. https://doi.org/10.1016/j.biortech.2019.01.089
  • Lima, G. M., Teixeira, P. C. N., Teixeira, C. M. L. L., Filócomo, D., & Lage, C. L. S. (2018). Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis. Algal Research, 31, 157–166. https://doi.org/10.1016/j.algal.2018.02.012
  • Pan-utai, W., & Iamtham, S. (2019). Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochemistry, 82, 189–198. https://doi.org/10.1016/j.procbio.2019.04.014
  • Phong, W. N., Show, P. L., Ling, T. C., Juan, J. C., Ng, E. P., & Chang, J. S. (2018). Mild cell disruption methods for bio-functional proteins recovery from microalgae—Recent developments and future perspectives. Algal Research, 31, 506–516. https://doi.org/10.1016/j.algal.2017.04.005
  • Prates, D. da F., Radmann, E. M., Duarte, J. H., Morais, M. G. de, & Costa, J. A. V. (2018). Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology, 256, 38–43. https://doi.org/10.1016/j.biortech.2018.01.122
  • Puzorjov, A., & McCormick, A. J. (2020). Phycobiliproteins from extreme environments and their potential applications. Journal of Experimental Botany, 71(13), 3827–3842. https://doi.org/10.1093/jxb/eraa139
  • Safi, C., Ursu, A. V., Laroche, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research, 3(1), 61–65. https://doi.org/10.1016/j.algal.2013.12.004
  • Tamburaci, S. (2009). Termal sudan i̇ zole ed i̇ len pseudanabaena sp. su ş unun üret i̇ m ko ş ullarinin opt i̇ m i̇ zasyonu. 106.
  • Tavanandi, H. A., & Raghavarao, K. S. M. S. (2019). Recovery of chlorophylls from spent biomass of Arthrospira platensis obtained after extraction of phycobiliproteins. Bioresource Technology, 271, 391–401. https://doi.org/10.1016/j.biortech.2018.09.141
  • Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry, 8(3), 303–313. https://doi.org/10.1016/S1350-4177(01)00071-2
There are 27 citations in total.

Details

Primary Language English
Subjects Hydrobiology, Microbiology, Maritime Engineering (Other)
Journal Section Research Article
Authors

Berke Kısaoğlan 0000-0003-3886-6128

Zeliha Demirel 0000-0003-3675-7315

Meltem Conk Dalay 0000-0002-1718-7292

Publication Date December 29, 2021
Submission Date June 11, 2021
Acceptance Date September 7, 2021
Published in Issue Year 2021 Volume: 10 Issue: 4

Cite

APA Kısaoğlan, B., Demirel, Z., & Conk Dalay, M. (2021). Phycocyanin Extraction From Frozen and Freeze-Dried Biomass of Pseudanabaena sp. by Using Mild Cell Disruption Methods. Marine Science and Technology Bulletin, 10(4), 333-339. https://doi.org/10.33714/masteb.951265
AMA Kısaoğlan B, Demirel Z, Conk Dalay M. Phycocyanin Extraction From Frozen and Freeze-Dried Biomass of Pseudanabaena sp. by Using Mild Cell Disruption Methods. Mar. Sci. Tech. Bull. December 2021;10(4):333-339. doi:10.33714/masteb.951265
Chicago Kısaoğlan, Berke, Zeliha Demirel, and Meltem Conk Dalay. “Phycocyanin Extraction From Frozen and Freeze-Dried Biomass of Pseudanabaena Sp. By Using Mild Cell Disruption Methods”. Marine Science and Technology Bulletin 10, no. 4 (December 2021): 333-39. https://doi.org/10.33714/masteb.951265.
EndNote Kısaoğlan B, Demirel Z, Conk Dalay M (December 1, 2021) Phycocyanin Extraction From Frozen and Freeze-Dried Biomass of Pseudanabaena sp. by Using Mild Cell Disruption Methods. Marine Science and Technology Bulletin 10 4 333–339.
IEEE B. Kısaoğlan, Z. Demirel, and M. Conk Dalay, “Phycocyanin Extraction From Frozen and Freeze-Dried Biomass of Pseudanabaena sp. by Using Mild Cell Disruption Methods”, Mar. Sci. Tech. Bull., vol. 10, no. 4, pp. 333–339, 2021, doi: 10.33714/masteb.951265.
ISNAD Kısaoğlan, Berke et al. “Phycocyanin Extraction From Frozen and Freeze-Dried Biomass of Pseudanabaena Sp. By Using Mild Cell Disruption Methods”. Marine Science and Technology Bulletin 10/4 (December 2021), 333-339. https://doi.org/10.33714/masteb.951265.
JAMA Kısaoğlan B, Demirel Z, Conk Dalay M. Phycocyanin Extraction From Frozen and Freeze-Dried Biomass of Pseudanabaena sp. by Using Mild Cell Disruption Methods. Mar. Sci. Tech. Bull. 2021;10:333–339.
MLA Kısaoğlan, Berke et al. “Phycocyanin Extraction From Frozen and Freeze-Dried Biomass of Pseudanabaena Sp. By Using Mild Cell Disruption Methods”. Marine Science and Technology Bulletin, vol. 10, no. 4, 2021, pp. 333-9, doi:10.33714/masteb.951265.
Vancouver Kısaoğlan B, Demirel Z, Conk Dalay M. Phycocyanin Extraction From Frozen and Freeze-Dried Biomass of Pseudanabaena sp. by Using Mild Cell Disruption Methods. Mar. Sci. Tech. Bull. 2021;10(4):333-9.

27116