Research Article
BibTex RIS Cite
Year 2022, Volume: 11 Issue: 2, 144 - 157, 24.06.2022
https://doi.org/10.33714/masteb.1082427

Abstract

References

  • Anderson, K. C., & Elizur, A. (2012). Hepatic reference gene selection in adult and juvenile female Atlantic salmon at normal and elevated temperatures. BMC Research Notes, 5, 21. https://doi.org/10.1186/1756-0500-5-21
  • Aydın, A. (2004). Sağlığımız ve omega-3 yağ asitleri. Sağlıkta ve Hastalıkta Beslenme Sempozyum Dizisi, 41, 181-189.
  • Bayır, A., Sirkecioğlu, A. N., Aras, N. M., Aksakal, E., Haliloğlu, H. İ., & Bayır, M. (2010). Fatty acids of neutral and phospholipids of three endangered trout: Salmo trutta caspius Kessler, Salmo trutta labrax Pallas and Salmo trutta macrostigma Dumeril. Food Chemistry, 119(3), 1050-1056. https://doi.org/10.1016/j.foodchem.2009.07.064
  • Bayır, M. (2011). Effect of dietary lipid sources on fatty acid pattern, growth and starvation response indicated by antioxidant enzymes in brown trout (Salmo trutta) [Ph.D. Thesis, Atatürk University].
  • Bayır, M., Bayır, A., & Wright, J. M. (2015). Divergent spatial regulation of duplicated fatty acid-binding protein (fabp) genes in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 14, 26-32, https://doi.org/10.1016/j.cbd.2015.02.002
  • Baysal, A. (2004). Beslenme. Hatipoğlu Yayınevi.
  • Bell, J. G., Henderson, R. J., Tocher, D. R., McGhee, F., Dick, J. R., Porter, A., Smullen, R., & Sargent, J. R. (2002). Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects tissue fatty acid compositions and hepatic fatty acid metabolism. The Journal of Nutrition, 132(2), 222-230. https://doi.org/10.1093/jn/132.2.222
  • Bell, J.G., McEvoy, J., Tocher, D.R., McGhee, F., Campbell, P.J., & Sargent, J.R. (2001). Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. The Journal of Nutrition, 131(5), 1535-1543. https://doi.org/10.1093/jn/131.5.1535
  • Bordignon, F., Martínez-Llorens, S., Trocino, A., Jover-Cerdá, M., & Tomás-Vidal, A. (2020). Recovery of fatty acid composition in Mediterranean yellowtail (Seriola dumerili, Risso 1810) fed a fish-oil finishing diet. International Journal of Molecular Sciences, 21(14), 4871. https://doi.org/10.3390/ijms21144871
  • Bustin, S. A. Benes, V., Nolan, T., & Pfaffl, M. W. (2005). Quantitative real-time RT-PCR – a perspective. Journal of Molecular Endocrinology, 34(3), 597-601. https://doi.org/10.1677/jme.1.01755
  • Caballero, M. J., Obach, A., Rosenlund, G., Montero, D., Gisvold, M., & Izquierdo, M. S. (2002). Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology on rainbow trout, Oncorhynchus mykiss. Aquaculture, 214(1-4), 253-271. https://doi.org/10.1016/S0044-8486(01)00852-3
  • Çetinkaya, O. (1995). Balık Besleme. Yüzüncü Yıl Üniversitesi Ziraat Fakültesi Yayın No: 9.
  • Chou, B. -S., & Shiau, S. -Y. (1999). Both n-6 and n-3 fatty acids are required for maximal growth of juvenile hybrid tilapia. North American Journal of Aquaculture, 61(1), 13-20. https://doi.org/10.1577/1548-8454(1999)061%3C0013:BNANFA%3E2.0.CO;2
  • Dernekbaşı, S., & Karayücel, İ. (2010). Balık yemlerinde kanola yağının kullanımı [Use of canola oil in fish feeds]. Journal of FisheriesSciences.com, 4(4), 469-479. https://doi.org/10.3153/jfscom.2010051
  • Ensminger, M. E., Oldfield, J. E., & Heinemann, W. W. (1990). Feeds and Nutrition. The Ensminger Publishing Company.
  • FAO. (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. FAO. https://doi.org/10.4060/ca9229en
  • Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226(1), 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
  • Furuhashi, M., Hotamisligil, G.S. (2008) Fatty acid-binding proteins: role in metabolic diseases andpotential as drug targets. Nature Reviews: Drug Discovery, 7(6), 489–503. https://doi.org/10.1038/nrd2589
  • Ganga, R., Montero D., Bell, J. G., Atalah, E., Ganuza, E., Vega-Orellana, O., Tort, L., Acerete, L., Afonso, J. M., Benitez-Sanatana, T., Vaquero, A. F., & Izquierdo, M. (2011). Stress response in sea bream (Sparus aurata) held under crowded conditions and fed diets containing linseed and/or soybean oil. Aquaculture, 311(1-4), 215-223. https://doi.org/10.1016/j.aquaculture.2010.11.050
  • Glatz, J. F., & van der Vusse, G. J. (1996). Cellular fatty acid-binding proteins: their function and physiological significance. Progress in Lipid Research, 35, 243-282. https://doi.org/10.1016/S0163-7827(96)00006-9
  • Greene, D. H. S., & Selivonchick, D. P. (1990). Effects of dietary vegetable, animal and marine lipids on muscle lipid and hematology of rainbow trout (Oncorhynchus mykiss). Aquaculture, 89(2), 165-182. https://doi.org/10.1016/0044-8486(90)90308-A
  • Grisdale-Helland, B., Ruyter, B., Rosenlund, G., Obach, A., Helland, S. J., Sandberg, M. G., Standal, H., & Røsjø, C. (2002). Influence of high contents of dietary soybean oil on growth, feed utilization, tissue fatty acid composition, heart histology and Standard oxygen consumption of Atlantic salmon (Salmo salar) raised at two temperatures. Aquaculture, 207(3-4), 311–329. https://doi.org/10.1016/S0044-8486(01)00743-8
  • Henderson, R. J., & Tocher, D. R. (1987). The lipid composition and biochemistry of freshwater fish. Progress in Lipid Research, 26(4), 281–347 https://doi.org/10.1016/0163-7827(87)90002-6
  • Izquierdo, M. S., Montero, D., Robaina, L., Caballero, M. J., Rosenlund, G., & Ginés, R. (2005). Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture, 250(1-2), 431-444. https://doi.org/10.1016/j.aquaculture.2004.12.001
  • Izquierdo, M. S., Obach, A., Arantzamendi, L., Montero, D., Robaina, L., & Rosenlund, G. (2003). Dietary lipid sources for seabream and seabass: Growth performance, tissue composition and flesh quality. Aquaculture Nutrition, 9(6), 397-407. https://doi.org/10.1046/j.1365-2095.2003.00270.x
  • Jordal, A. -E. O., Torstensen, B. E., Tsoi, S., Tocher, D. R., Lall, S. P., & Douglas, S. (2005). Small scale cDNA microarray analysis of expression of genes for lipid metabolism in liver of Atlantic salmon (Salmo salar L.) effect of dietary rapeseed oil replacement. The Journal Nutrition, 135(10), 2355–2361. https://doi.org/10.1093/jn/135.10.2355
  • Kanazawa, A., Teshima, S., Tokiwa, S., Kayama, M., & Hirata, M. (1979). Essential fatty acid in the diet of prawn II. Effect of docosahexaenoic acid on growth. Bulletin of the Japanese Society for the Science of Fish, 45(9), 1151-1153. https://doi.org/10.2331/suisan.45.1151
  • Kurt, O., & Seyis, F. (2008). Alternatif yağ bitkisi: Ketencik (Camelina sativa (L.) Crantz) [An alternative oilseed crop: camelina [Camelina sativa (L.) Crantz]]. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 23(2), 116- 120.
  • Legendre, M., Kerdcuhen, N., Corraze, G., & Bergot, P. (1995). Larval rearing of an African catfish Heterobranchus longifilis (Teleostei, Clariidae): effect of dietary lipids on growth, survival and fatty acid composition of fry. Aquatic Living Resources, 8, 355-363.
  • Ling, S., Hashim, R. Kolkovski, S., & Shu‐Chien A. C. (2006). Effect of varying dietary lipid and protein levels on growth and reproductive performance of female swordtails Xiphophorus helleri (Poeciliidae). Aquaculture Research, 37(13), 1267-1275. https://doi.org/10.1111/j.1365-2109.2006.01554.x
  • Luo, B. Z., Tan, X. Y, Wang, V. M., & Fan, Q. X. (2009). Effects of long-term starvation on body weight and body composition of juvenile channel catfish, Ictalurus punctatus, with special emphasis on amino acid and fatty acid changes. Journal of Applied Ichthyology, 25(2), 184–189. https://doi.org/10.1111/j.1439-0426.2009.01216.x
  • Metcalfe, L. D., & Schmitz, A. A. (1961). The rapid preparation of fatty acid esters for gas chromatographic analysis. Analytical Chemistry, 33(3), 363-364. https://doi.org/10.1021/ac60171a016
  • Mohamed, E. H. A., & Al-Sabahi, J. N. (2011). Fatty acids content and profile of common commercial Nile fishes in Sudan. International Journal of Advanced Research in Agriculture, 1(2), 18-22.
  • Montero, D., Kalinowski, T., Caballero, M. J., Obach, A., Tort, L., Robaina, L., & Izquierdo, M. S. (2005). Effect of dietary vegetable lipid sources in gilthead sea bream (Sparus aurata) immune status and stress resistance. Cahiers Options Méditerranéennes, 63, 103-112.
  • Montero, D., Kalinowski, T., Obach, A., Robaina, L., Tort, L., Caballero, M. J., & Izquierdo, M. S. (2003). Vegetable lipid sources for gilthead sea bream (Sparus aurata): Effects on fish health. Aquaculture, 225(1-4), 353-370. https://doi.org/10.1016/S0044-8486(03)00301-6
  • Mourente, G., & Bell, J. G. (2006). Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long-term growth study: Effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet. Comparative Biochemistry and Physiology. Part B, 145(3-4), 389-399. https://doi.org/10.1016/j.cbpb.2006.08.012
  • Mutch, D. M., Wahli, W., & Williamson, G. (2005). Nutrigenomics and nutrigenetics: the emerging faces of nutrition. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 19(12), 1602–1616. https://doi.org/10.1096/fj.05-3911rev
  • Nakamura, M. T., & Nara, T. Y. (2004). Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annual review of nutrition, 24, 345–376. https://doi.org/10.1146/annurev.nutr.24.121803.063211
  • Ni Eidhin, D., Burke, J., & O’Beirne, D. (2003). Oxidative stability of ω3-rich camelina oil and camelina oil-based spread compared with plant and fish oils and sunflower spread. Journal of Food Science, 68(1), 345–353. https://doi.org/10.1111/j.1365-2621.2003.tb14163.x
  • Niewold, T.A., Meinen M., & van der Meulen, J. (2004). Plasma intestinal fatty acid binding protein (I-FABP) concentrations increase following intestinal ischemia in pigs. Research in Veterinary Science, 77(1), 89-91. https://doi.org/10.1016/j.rvsc.2004.02.006
  • Olsen, R. E., Dragnes, B. T., Myklebust, R., & Ringo, E. (2003). Effect of soybean oil and soybean lecithin on intestinal lipid composition and lipid droplet accumulation of rainbow trout, Oncorhynchus mykiss Walbaum. Fish Physiology and Biochemistry, 29,181-192. https://doi.org/10.1023/B:FISH.0000045708.67760.43
  • Piedecausa, M. A., Mazon, M. J., Garcia, B., & Hernandez, M. D. (2007). Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo), Aquaculture, 263(1-4), 211-219. https://doi.org/10.1016/j.aquaculture.2006.09.039
  • Rinchard, J., Czesny, S., & Dabrowski, K. (2007). Influence of lipid class and fatty acid deficiency on survival, growth and fatty acid composition in rainbow trout juveniles. Aquaculture, 264(1-4), 363-371. https://doi.org/10.1016/j.aquaculture.2006.11.024
  • Ruyter, B., Roesjoe, C., Maesoeval, K., Einen, O., & Thomassen, M. S. (2000) Influence of dietary n-3 fatty acids on the desaturation and elongation of [1-14C] 18:2 n-6 and [1-14C] 18:3 n-3 in Atlantic salmon hepatocytes. Fish Physiology and Biochemistry, 23, 151-158. https://doi.org/10.1023/A:1007893317923
  • Sargent, J. R., Henderson, R. J., Tocher, D. R. (1989). The lipids. In Halver, J. (Ed.), Fish nutrition (2nd ed.) (pp. 153-218). Academic Press.
  • Sargent, J. R., Tocher, D. R., & Bell, J. G. (2002). The lipids. In Halver, J. E., & Hardy, R. W. (Eds.), Fish nutrition (pp. 181-257) (3rd ed.). Academic.
  • Sargent, J., Mcevoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., & Tocher, D. (1999a). Lipid nutrition of marine fish during early development: Current status and future directions, Aquaculture, 179(1-4), 217-229. https://doi.org/10.1016/S0044-8486(99)00191-X
  • Sargent, J., Bell, G., Mcevoy, L., Tocher, D., & Estevaz, A. (1999b). Recent development in the essential fatty acid nutrition in fish, Aquaculture, 177(1-4), 191-199. https://doi.org/10.1016/S0044-8486(99)00083-6
  • Sowizral, K. C., Rumsay, G. L., & Kinsella, J. E. (1990). Effect of dietary α-linolenic acid on n−3 fatty acids of rainbow trout lipids. Lipids, 25, 246-253.
  • SPSS. (2011). IBM SPSS statistics for window, version 20,0 Armonk, NY.
  • Storch, J., & Corsico, B. (2008). The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annual Review of Nutrition, 28, 73-95. https://doi.org/10.1146/annurev.nutr.27.061406.093710
  • Tocher, D. R., Bell, J. G., Dick, J. R., & Crampton, V. O. (2003). Effects of dietary vegetable oil on Atlantic salmon hepatocyte fatty acid desaturation and liver fatty acid compositions. Lipids, 38(7), 723–732. https://doi.org/10.1007/s11745-003-1120-y
  • Tocher, D. R., Fonseca-Madrigal, J., Bell, J. G., Dick, J. R., Henderson R. J., & Sargent, J. R. (2002). Effects of diets containing linseed oil on fatty acid desaturation and oxidation in hepatocytes and intestinal enterocytes in Atlantic salmon (Salmo salar). Fish Physiology and Biochemistry, 26, 157-170. https://doi.org/10.1023/A:1025416731014
  • Torstensen, B. E., Lie, Ø., & Frøyland, L. (2000). Lipid metabolism and tissue composition in Atlantic salmon (Salmo salar L.)--effects of capelin oil, palm oil, and oleic acid-enriched sunflower oil as dietary lipid sources. Lipids, 35(6), 653-664. https://doi.org/10.1007/s11745-000-0570-6
  • Torstensen, B. E., Nanton, A., Olsvik, P. A., Sundvold, H., & Stubhaug, I. (2009). Gene expression of fatty acid transport proteins (cd36 and FATP) and ß-oxidation-related genes in Atlantic salmon (Salmo salar L.) fed fish oil or vegetable oil. Aquaculture Nutrition, 15(4), 440–451. https://doi.org/10.1111/j.1365-2095.2008.00609.x
  • Tucker, J. W. Jr. (1998). Marine Fish Culture. Kluwer Academic Publishers.
  • Vázquez, R., Gonzalez, S., Rodriguez, A., & Mourente, G. (1994). Biochemical composition and fatty acid content of fertilized eggs, yolk sac stage larvae and first feeding larvae of the Senegal sole (Solea senegalensis Kaup). Aquaculture, 119(2-3), 273-286. https://doi.org/10.1016/0044-8486(94)90182-1
  • Vélez-Calabria, G., Peñaranda, D. S., Jover-Cerdá, M., Llorens, S. M., & Tomás-Vidal, A. (2021). Successful inclusion of high vegetable protein sources in feed for rainbow trout without decrement in intestinal health. Animals, 11(12), 3577. https://doi.org/10.3390/ani11123577
  • Watanabe, T. (1982). Lipid nutrition in fish. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 73(1), 3-15. https://doi.org/10.1016/0305-0491(82)90196-1
  • Wiegand, M. D. (1996). Utilization of yolk fatty acids by goldfish embryos and larvae. Fish Physiology and Biochemistry, 15(1), 21-27. https://doi.org/10.1007/bf01874834
  • Yanar, Y., Büyükcapar, H., Yanar, M., & Göcer, M. (2006). Effects of carotenoids from red pepper and marigold flower on pigmentation, sensory properties and fatty acid composition of rainbow trout. Food Chemistry, 100(1), 326-330. https://doi.org/10.1016/j.foodchem.2005.09.056
  • Zheng, X. Z., Torstensen, B. E., Tocher, D. R., Dick, J. R., Henderson, R. J., & Bell, J. G. (2005) Environmental and dietary influences on highly unsaturated fatty acid biosynthesis and expression of fatty acyl desaturase and elongase genes in liver of Atlantic salmon (Salmo salar). Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1734(1), 13-24. https://doi.org/10.1016/j.bbalip.2005.01.006

Fatty Acid Composition and mRNA Expression of Fatty Acid Binding Protein Genes (fabp3 and fabp6) in Rainbow Trout Fed Camelina Seed Oil (Camelina sativa)-Based Diets

Year 2022, Volume: 11 Issue: 2, 144 - 157, 24.06.2022
https://doi.org/10.33714/masteb.1082427

Abstract

Vegetable lipids such as camelina oil (Camelina sativa) are used as alternatives oil sources to fish oil in aquafeeds. In this study, we determined fatty acid-binding protein 3 (fabp3) and fatty acid-binding protein 6 (fabp6) gene expression and fatty acid composition in the liver and muscle tissue of rainbow trout fed different amounts of dietary camelina seed oil [100% (CO100), 67% (CO67), and 37% (CO33)]. Palmitic acid and oleic acid were identified as the most abundant saturated and monounsaturated fatty acids, respectively, in both tissues across all experimental groups. The highest levels of n-6 polyunsaturated fatty acid (Σn- 6 PUFA) were found in the first biopsy (15th day) taken from fish fed a diet of CO100, while the highest Σn–3 PUFA level was found in the third biopsy (45th day) taken from the same group. The FO100 (fish oil) diet was found to have the highest Σn-3 / n-6 ratio, as well as the highest levels of eicosapentaenoic acid and docosahexaenoic acid. In general, the fatty acid composition of the fish reflected that of their respective diets. The expression of fabp3 and fabp6 genes in the muscle of fish fed camelina seed oil were not significantly different from control group. However, fabp3 gene expression of liver of FO100 group was found to have significantly higher than CO67 and CO33. A difference in hepatic fabp6 gene expression was also noted in the FO100 group, but was not found to be statistically significant. Growth parameters and survival rate were not affected after the 45 days feeding trial. These results suggest that camelina seed oil can be used as an alternative to fish oil in rainbow trout diet.

References

  • Anderson, K. C., & Elizur, A. (2012). Hepatic reference gene selection in adult and juvenile female Atlantic salmon at normal and elevated temperatures. BMC Research Notes, 5, 21. https://doi.org/10.1186/1756-0500-5-21
  • Aydın, A. (2004). Sağlığımız ve omega-3 yağ asitleri. Sağlıkta ve Hastalıkta Beslenme Sempozyum Dizisi, 41, 181-189.
  • Bayır, A., Sirkecioğlu, A. N., Aras, N. M., Aksakal, E., Haliloğlu, H. İ., & Bayır, M. (2010). Fatty acids of neutral and phospholipids of three endangered trout: Salmo trutta caspius Kessler, Salmo trutta labrax Pallas and Salmo trutta macrostigma Dumeril. Food Chemistry, 119(3), 1050-1056. https://doi.org/10.1016/j.foodchem.2009.07.064
  • Bayır, M. (2011). Effect of dietary lipid sources on fatty acid pattern, growth and starvation response indicated by antioxidant enzymes in brown trout (Salmo trutta) [Ph.D. Thesis, Atatürk University].
  • Bayır, M., Bayır, A., & Wright, J. M. (2015). Divergent spatial regulation of duplicated fatty acid-binding protein (fabp) genes in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 14, 26-32, https://doi.org/10.1016/j.cbd.2015.02.002
  • Baysal, A. (2004). Beslenme. Hatipoğlu Yayınevi.
  • Bell, J. G., Henderson, R. J., Tocher, D. R., McGhee, F., Dick, J. R., Porter, A., Smullen, R., & Sargent, J. R. (2002). Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects tissue fatty acid compositions and hepatic fatty acid metabolism. The Journal of Nutrition, 132(2), 222-230. https://doi.org/10.1093/jn/132.2.222
  • Bell, J.G., McEvoy, J., Tocher, D.R., McGhee, F., Campbell, P.J., & Sargent, J.R. (2001). Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. The Journal of Nutrition, 131(5), 1535-1543. https://doi.org/10.1093/jn/131.5.1535
  • Bordignon, F., Martínez-Llorens, S., Trocino, A., Jover-Cerdá, M., & Tomás-Vidal, A. (2020). Recovery of fatty acid composition in Mediterranean yellowtail (Seriola dumerili, Risso 1810) fed a fish-oil finishing diet. International Journal of Molecular Sciences, 21(14), 4871. https://doi.org/10.3390/ijms21144871
  • Bustin, S. A. Benes, V., Nolan, T., & Pfaffl, M. W. (2005). Quantitative real-time RT-PCR – a perspective. Journal of Molecular Endocrinology, 34(3), 597-601. https://doi.org/10.1677/jme.1.01755
  • Caballero, M. J., Obach, A., Rosenlund, G., Montero, D., Gisvold, M., & Izquierdo, M. S. (2002). Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology on rainbow trout, Oncorhynchus mykiss. Aquaculture, 214(1-4), 253-271. https://doi.org/10.1016/S0044-8486(01)00852-3
  • Çetinkaya, O. (1995). Balık Besleme. Yüzüncü Yıl Üniversitesi Ziraat Fakültesi Yayın No: 9.
  • Chou, B. -S., & Shiau, S. -Y. (1999). Both n-6 and n-3 fatty acids are required for maximal growth of juvenile hybrid tilapia. North American Journal of Aquaculture, 61(1), 13-20. https://doi.org/10.1577/1548-8454(1999)061%3C0013:BNANFA%3E2.0.CO;2
  • Dernekbaşı, S., & Karayücel, İ. (2010). Balık yemlerinde kanola yağının kullanımı [Use of canola oil in fish feeds]. Journal of FisheriesSciences.com, 4(4), 469-479. https://doi.org/10.3153/jfscom.2010051
  • Ensminger, M. E., Oldfield, J. E., & Heinemann, W. W. (1990). Feeds and Nutrition. The Ensminger Publishing Company.
  • FAO. (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. FAO. https://doi.org/10.4060/ca9229en
  • Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226(1), 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
  • Furuhashi, M., Hotamisligil, G.S. (2008) Fatty acid-binding proteins: role in metabolic diseases andpotential as drug targets. Nature Reviews: Drug Discovery, 7(6), 489–503. https://doi.org/10.1038/nrd2589
  • Ganga, R., Montero D., Bell, J. G., Atalah, E., Ganuza, E., Vega-Orellana, O., Tort, L., Acerete, L., Afonso, J. M., Benitez-Sanatana, T., Vaquero, A. F., & Izquierdo, M. (2011). Stress response in sea bream (Sparus aurata) held under crowded conditions and fed diets containing linseed and/or soybean oil. Aquaculture, 311(1-4), 215-223. https://doi.org/10.1016/j.aquaculture.2010.11.050
  • Glatz, J. F., & van der Vusse, G. J. (1996). Cellular fatty acid-binding proteins: their function and physiological significance. Progress in Lipid Research, 35, 243-282. https://doi.org/10.1016/S0163-7827(96)00006-9
  • Greene, D. H. S., & Selivonchick, D. P. (1990). Effects of dietary vegetable, animal and marine lipids on muscle lipid and hematology of rainbow trout (Oncorhynchus mykiss). Aquaculture, 89(2), 165-182. https://doi.org/10.1016/0044-8486(90)90308-A
  • Grisdale-Helland, B., Ruyter, B., Rosenlund, G., Obach, A., Helland, S. J., Sandberg, M. G., Standal, H., & Røsjø, C. (2002). Influence of high contents of dietary soybean oil on growth, feed utilization, tissue fatty acid composition, heart histology and Standard oxygen consumption of Atlantic salmon (Salmo salar) raised at two temperatures. Aquaculture, 207(3-4), 311–329. https://doi.org/10.1016/S0044-8486(01)00743-8
  • Henderson, R. J., & Tocher, D. R. (1987). The lipid composition and biochemistry of freshwater fish. Progress in Lipid Research, 26(4), 281–347 https://doi.org/10.1016/0163-7827(87)90002-6
  • Izquierdo, M. S., Montero, D., Robaina, L., Caballero, M. J., Rosenlund, G., & Ginés, R. (2005). Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture, 250(1-2), 431-444. https://doi.org/10.1016/j.aquaculture.2004.12.001
  • Izquierdo, M. S., Obach, A., Arantzamendi, L., Montero, D., Robaina, L., & Rosenlund, G. (2003). Dietary lipid sources for seabream and seabass: Growth performance, tissue composition and flesh quality. Aquaculture Nutrition, 9(6), 397-407. https://doi.org/10.1046/j.1365-2095.2003.00270.x
  • Jordal, A. -E. O., Torstensen, B. E., Tsoi, S., Tocher, D. R., Lall, S. P., & Douglas, S. (2005). Small scale cDNA microarray analysis of expression of genes for lipid metabolism in liver of Atlantic salmon (Salmo salar L.) effect of dietary rapeseed oil replacement. The Journal Nutrition, 135(10), 2355–2361. https://doi.org/10.1093/jn/135.10.2355
  • Kanazawa, A., Teshima, S., Tokiwa, S., Kayama, M., & Hirata, M. (1979). Essential fatty acid in the diet of prawn II. Effect of docosahexaenoic acid on growth. Bulletin of the Japanese Society for the Science of Fish, 45(9), 1151-1153. https://doi.org/10.2331/suisan.45.1151
  • Kurt, O., & Seyis, F. (2008). Alternatif yağ bitkisi: Ketencik (Camelina sativa (L.) Crantz) [An alternative oilseed crop: camelina [Camelina sativa (L.) Crantz]]. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 23(2), 116- 120.
  • Legendre, M., Kerdcuhen, N., Corraze, G., & Bergot, P. (1995). Larval rearing of an African catfish Heterobranchus longifilis (Teleostei, Clariidae): effect of dietary lipids on growth, survival and fatty acid composition of fry. Aquatic Living Resources, 8, 355-363.
  • Ling, S., Hashim, R. Kolkovski, S., & Shu‐Chien A. C. (2006). Effect of varying dietary lipid and protein levels on growth and reproductive performance of female swordtails Xiphophorus helleri (Poeciliidae). Aquaculture Research, 37(13), 1267-1275. https://doi.org/10.1111/j.1365-2109.2006.01554.x
  • Luo, B. Z., Tan, X. Y, Wang, V. M., & Fan, Q. X. (2009). Effects of long-term starvation on body weight and body composition of juvenile channel catfish, Ictalurus punctatus, with special emphasis on amino acid and fatty acid changes. Journal of Applied Ichthyology, 25(2), 184–189. https://doi.org/10.1111/j.1439-0426.2009.01216.x
  • Metcalfe, L. D., & Schmitz, A. A. (1961). The rapid preparation of fatty acid esters for gas chromatographic analysis. Analytical Chemistry, 33(3), 363-364. https://doi.org/10.1021/ac60171a016
  • Mohamed, E. H. A., & Al-Sabahi, J. N. (2011). Fatty acids content and profile of common commercial Nile fishes in Sudan. International Journal of Advanced Research in Agriculture, 1(2), 18-22.
  • Montero, D., Kalinowski, T., Caballero, M. J., Obach, A., Tort, L., Robaina, L., & Izquierdo, M. S. (2005). Effect of dietary vegetable lipid sources in gilthead sea bream (Sparus aurata) immune status and stress resistance. Cahiers Options Méditerranéennes, 63, 103-112.
  • Montero, D., Kalinowski, T., Obach, A., Robaina, L., Tort, L., Caballero, M. J., & Izquierdo, M. S. (2003). Vegetable lipid sources for gilthead sea bream (Sparus aurata): Effects on fish health. Aquaculture, 225(1-4), 353-370. https://doi.org/10.1016/S0044-8486(03)00301-6
  • Mourente, G., & Bell, J. G. (2006). Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long-term growth study: Effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet. Comparative Biochemistry and Physiology. Part B, 145(3-4), 389-399. https://doi.org/10.1016/j.cbpb.2006.08.012
  • Mutch, D. M., Wahli, W., & Williamson, G. (2005). Nutrigenomics and nutrigenetics: the emerging faces of nutrition. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 19(12), 1602–1616. https://doi.org/10.1096/fj.05-3911rev
  • Nakamura, M. T., & Nara, T. Y. (2004). Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annual review of nutrition, 24, 345–376. https://doi.org/10.1146/annurev.nutr.24.121803.063211
  • Ni Eidhin, D., Burke, J., & O’Beirne, D. (2003). Oxidative stability of ω3-rich camelina oil and camelina oil-based spread compared with plant and fish oils and sunflower spread. Journal of Food Science, 68(1), 345–353. https://doi.org/10.1111/j.1365-2621.2003.tb14163.x
  • Niewold, T.A., Meinen M., & van der Meulen, J. (2004). Plasma intestinal fatty acid binding protein (I-FABP) concentrations increase following intestinal ischemia in pigs. Research in Veterinary Science, 77(1), 89-91. https://doi.org/10.1016/j.rvsc.2004.02.006
  • Olsen, R. E., Dragnes, B. T., Myklebust, R., & Ringo, E. (2003). Effect of soybean oil and soybean lecithin on intestinal lipid composition and lipid droplet accumulation of rainbow trout, Oncorhynchus mykiss Walbaum. Fish Physiology and Biochemistry, 29,181-192. https://doi.org/10.1023/B:FISH.0000045708.67760.43
  • Piedecausa, M. A., Mazon, M. J., Garcia, B., & Hernandez, M. D. (2007). Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo), Aquaculture, 263(1-4), 211-219. https://doi.org/10.1016/j.aquaculture.2006.09.039
  • Rinchard, J., Czesny, S., & Dabrowski, K. (2007). Influence of lipid class and fatty acid deficiency on survival, growth and fatty acid composition in rainbow trout juveniles. Aquaculture, 264(1-4), 363-371. https://doi.org/10.1016/j.aquaculture.2006.11.024
  • Ruyter, B., Roesjoe, C., Maesoeval, K., Einen, O., & Thomassen, M. S. (2000) Influence of dietary n-3 fatty acids on the desaturation and elongation of [1-14C] 18:2 n-6 and [1-14C] 18:3 n-3 in Atlantic salmon hepatocytes. Fish Physiology and Biochemistry, 23, 151-158. https://doi.org/10.1023/A:1007893317923
  • Sargent, J. R., Henderson, R. J., Tocher, D. R. (1989). The lipids. In Halver, J. (Ed.), Fish nutrition (2nd ed.) (pp. 153-218). Academic Press.
  • Sargent, J. R., Tocher, D. R., & Bell, J. G. (2002). The lipids. In Halver, J. E., & Hardy, R. W. (Eds.), Fish nutrition (pp. 181-257) (3rd ed.). Academic.
  • Sargent, J., Mcevoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., & Tocher, D. (1999a). Lipid nutrition of marine fish during early development: Current status and future directions, Aquaculture, 179(1-4), 217-229. https://doi.org/10.1016/S0044-8486(99)00191-X
  • Sargent, J., Bell, G., Mcevoy, L., Tocher, D., & Estevaz, A. (1999b). Recent development in the essential fatty acid nutrition in fish, Aquaculture, 177(1-4), 191-199. https://doi.org/10.1016/S0044-8486(99)00083-6
  • Sowizral, K. C., Rumsay, G. L., & Kinsella, J. E. (1990). Effect of dietary α-linolenic acid on n−3 fatty acids of rainbow trout lipids. Lipids, 25, 246-253.
  • SPSS. (2011). IBM SPSS statistics for window, version 20,0 Armonk, NY.
  • Storch, J., & Corsico, B. (2008). The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annual Review of Nutrition, 28, 73-95. https://doi.org/10.1146/annurev.nutr.27.061406.093710
  • Tocher, D. R., Bell, J. G., Dick, J. R., & Crampton, V. O. (2003). Effects of dietary vegetable oil on Atlantic salmon hepatocyte fatty acid desaturation and liver fatty acid compositions. Lipids, 38(7), 723–732. https://doi.org/10.1007/s11745-003-1120-y
  • Tocher, D. R., Fonseca-Madrigal, J., Bell, J. G., Dick, J. R., Henderson R. J., & Sargent, J. R. (2002). Effects of diets containing linseed oil on fatty acid desaturation and oxidation in hepatocytes and intestinal enterocytes in Atlantic salmon (Salmo salar). Fish Physiology and Biochemistry, 26, 157-170. https://doi.org/10.1023/A:1025416731014
  • Torstensen, B. E., Lie, Ø., & Frøyland, L. (2000). Lipid metabolism and tissue composition in Atlantic salmon (Salmo salar L.)--effects of capelin oil, palm oil, and oleic acid-enriched sunflower oil as dietary lipid sources. Lipids, 35(6), 653-664. https://doi.org/10.1007/s11745-000-0570-6
  • Torstensen, B. E., Nanton, A., Olsvik, P. A., Sundvold, H., & Stubhaug, I. (2009). Gene expression of fatty acid transport proteins (cd36 and FATP) and ß-oxidation-related genes in Atlantic salmon (Salmo salar L.) fed fish oil or vegetable oil. Aquaculture Nutrition, 15(4), 440–451. https://doi.org/10.1111/j.1365-2095.2008.00609.x
  • Tucker, J. W. Jr. (1998). Marine Fish Culture. Kluwer Academic Publishers.
  • Vázquez, R., Gonzalez, S., Rodriguez, A., & Mourente, G. (1994). Biochemical composition and fatty acid content of fertilized eggs, yolk sac stage larvae and first feeding larvae of the Senegal sole (Solea senegalensis Kaup). Aquaculture, 119(2-3), 273-286. https://doi.org/10.1016/0044-8486(94)90182-1
  • Vélez-Calabria, G., Peñaranda, D. S., Jover-Cerdá, M., Llorens, S. M., & Tomás-Vidal, A. (2021). Successful inclusion of high vegetable protein sources in feed for rainbow trout without decrement in intestinal health. Animals, 11(12), 3577. https://doi.org/10.3390/ani11123577
  • Watanabe, T. (1982). Lipid nutrition in fish. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 73(1), 3-15. https://doi.org/10.1016/0305-0491(82)90196-1
  • Wiegand, M. D. (1996). Utilization of yolk fatty acids by goldfish embryos and larvae. Fish Physiology and Biochemistry, 15(1), 21-27. https://doi.org/10.1007/bf01874834
  • Yanar, Y., Büyükcapar, H., Yanar, M., & Göcer, M. (2006). Effects of carotenoids from red pepper and marigold flower on pigmentation, sensory properties and fatty acid composition of rainbow trout. Food Chemistry, 100(1), 326-330. https://doi.org/10.1016/j.foodchem.2005.09.056
  • Zheng, X. Z., Torstensen, B. E., Tocher, D. R., Dick, J. R., Henderson, R. J., & Bell, J. G. (2005) Environmental and dietary influences on highly unsaturated fatty acid biosynthesis and expression of fatty acyl desaturase and elongase genes in liver of Atlantic salmon (Salmo salar). Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1734(1), 13-24. https://doi.org/10.1016/j.bbalip.2005.01.006
There are 62 citations in total.

Details

Primary Language English
Subjects Industrial Biotechnology
Journal Section Research Article
Authors

Sinem Keşan 0000-0003-0355-2532

Mehtap Bayır 0000-0002-7794-1058

Gökhan Arslan 0000-0002-8634-8598

Publication Date June 24, 2022
Submission Date March 3, 2022
Acceptance Date March 24, 2022
Published in Issue Year 2022 Volume: 11 Issue: 2

Cite

APA Keşan, S., Bayır, M., & Arslan, G. (2022). Fatty Acid Composition and mRNA Expression of Fatty Acid Binding Protein Genes (fabp3 and fabp6) in Rainbow Trout Fed Camelina Seed Oil (Camelina sativa)-Based Diets. Marine Science and Technology Bulletin, 11(2), 144-157. https://doi.org/10.33714/masteb.1082427
AMA Keşan S, Bayır M, Arslan G. Fatty Acid Composition and mRNA Expression of Fatty Acid Binding Protein Genes (fabp3 and fabp6) in Rainbow Trout Fed Camelina Seed Oil (Camelina sativa)-Based Diets. Mar. Sci. Tech. Bull. June 2022;11(2):144-157. doi:10.33714/masteb.1082427
Chicago Keşan, Sinem, Mehtap Bayır, and Gökhan Arslan. “Fatty Acid Composition and MRNA Expression of Fatty Acid Binding Protein Genes (fabp3 and fabp6) in Rainbow Trout Fed Camelina Seed Oil (Camelina Sativa)-Based Diets”. Marine Science and Technology Bulletin 11, no. 2 (June 2022): 144-57. https://doi.org/10.33714/masteb.1082427.
EndNote Keşan S, Bayır M, Arslan G (June 1, 2022) Fatty Acid Composition and mRNA Expression of Fatty Acid Binding Protein Genes (fabp3 and fabp6) in Rainbow Trout Fed Camelina Seed Oil (Camelina sativa)-Based Diets. Marine Science and Technology Bulletin 11 2 144–157.
IEEE S. Keşan, M. Bayır, and G. Arslan, “Fatty Acid Composition and mRNA Expression of Fatty Acid Binding Protein Genes (fabp3 and fabp6) in Rainbow Trout Fed Camelina Seed Oil (Camelina sativa)-Based Diets”, Mar. Sci. Tech. Bull., vol. 11, no. 2, pp. 144–157, 2022, doi: 10.33714/masteb.1082427.
ISNAD Keşan, Sinem et al. “Fatty Acid Composition and MRNA Expression of Fatty Acid Binding Protein Genes (fabp3 and fabp6) in Rainbow Trout Fed Camelina Seed Oil (Camelina Sativa)-Based Diets”. Marine Science and Technology Bulletin 11/2 (June 2022), 144-157. https://doi.org/10.33714/masteb.1082427.
JAMA Keşan S, Bayır M, Arslan G. Fatty Acid Composition and mRNA Expression of Fatty Acid Binding Protein Genes (fabp3 and fabp6) in Rainbow Trout Fed Camelina Seed Oil (Camelina sativa)-Based Diets. Mar. Sci. Tech. Bull. 2022;11:144–157.
MLA Keşan, Sinem et al. “Fatty Acid Composition and MRNA Expression of Fatty Acid Binding Protein Genes (fabp3 and fabp6) in Rainbow Trout Fed Camelina Seed Oil (Camelina Sativa)-Based Diets”. Marine Science and Technology Bulletin, vol. 11, no. 2, 2022, pp. 144-57, doi:10.33714/masteb.1082427.
Vancouver Keşan S, Bayır M, Arslan G. Fatty Acid Composition and mRNA Expression of Fatty Acid Binding Protein Genes (fabp3 and fabp6) in Rainbow Trout Fed Camelina Seed Oil (Camelina sativa)-Based Diets. Mar. Sci. Tech. Bull. 2022;11(2):144-57.

27116