Research Article
BibTex RIS Cite

Sustainability of Karacaören-I Dam Lake Rainbow Trout Cage Farming (Türkiye) in Terms of Cultural Energy and Carbon Footprint Expended on Compound Diet and Transportation

Year 2022, Volume: 11 Issue: 4, 475 - 492, 31.12.2022
https://doi.org/10.33714/masteb.1178141

Abstract

The purpose of this study was to assess the consumed compound diet and juvenile fish, harvested fish, and compound diet transport of Karacaören Dam Lake-I rainbow trout cage farming (KRTC) in terms of cultural energy (CE) and carbon footprint (CF) expended sustainability. Data was collected through face-to-face interviews with the farmers. Cultural energy and carbon footprint were calculated with the data obtained from the literature. The lowest and highest FCRs in KRTC were 0.91 and 1.18, the closest and farthest distances related to transportation were 387 and 427 km for aquafeed factories, 7 and 650 km for hatcheries, and 67 and 450 km for processing factories. Cultural energy and carbon footprint expended on consumed compound diet (CECD-Gcal and Mcal kg-1, and CFCD-tonne CO2e and kg CO2e kg-1) and cultural energy and carbon footprint expended on transportation analyzes (CET-Gcal and Mcal kg-1, and CFT-tonne CO2e and kg CO2e kg-1) were performed according to the literature of 20-40 g fish stocked in the beginning of November 2020 and 270-500 g harvested until early June 2021 in the basin. In the access of sustainability, the CE (Mcal kg-1) and CF (CO2e kg-1) expended values in kg of the harvested fish were given. The average values of CE expended of 5 different aquafeed groups used in the basin were 3.65, 3.58, 3.41, 3.25, and 3.55 Mcal kg-1, respectively and the average values of CF expended were 1.05, 1.03, 1.14, 1.40, and 1.10 kg CO2e kg-1, respectively. The average share of CE and CF in the compound diet was 86.59% and 86.61%, respectively. The KRTC sustainability criterion for compound diet and transportation values was 2.9260 CE:CF. It is recommended to develop a sustainability index of aquaculture systems and species-specific CE and CF expended values.

Supporting Institution

Yok

Project Number

Yok

Thanks

The author would like to thank Dr. Hayati Koknaroglu, Dr. Hüseyin Sevgili, Dr. Joël Aubin, and Dr. Jacopo Bacenetti for their help during the study, and Fisheries Technician İsmail Can for fieldwork support.

References

  • Adhikari, S., Lal, R., & Sahu, B. C. (2013). Carbon footprint of aquaculture in eastern India. Journal of Water and Climate Change, 4(4), 410-421. https://doi.org/10.2166/wcc.2013.028
  • Akunal, T., & Koknaroglu, H. (2021). Commercial native laying hybrids developed in Turkey are comparable to foreign hybrids in terms of performance and cultural energy use efficiency. Animal Science Papers and Reports, 39(2), 169-177.
  • Anonymous. (2021). Isparta Directorate of Provincial Agriculture and Forestry, Republic of Türkiye Ministry of Agriculture and Forestry.
  • Arslan, G., & Oguzhan Yildiz, P. (2021). Türkiye su ürünleri sektörüne genel bakış [An overview to fisheries sector in Turkey]. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 7(1), 46-57.
  • Becer Ozvarol, Z. A., & İkiz, R. (2009). Mortality ratio and stock analysis of vimba (Vimba vimba tenella (Nordmann,1840)) population in Karacaoren I Dam Lake (Burdur Turkey). Journal of Applied Biological Sciences, 3(2), 143-147.
  • Boissy, J., Aubin, J., Drissi, A., van der Werf, H. M. G., Bell, G. J., & Kaushik, S. J. (2011). Environmental impacts of plant-based salmonid diets at feed and farm scales. Aquaculture, 321(1), 61-70. https://doi.org/10.1016/j.aquaculture.2011.08.033
  • Boyd, C. E., McNevin, A. A., & Tucker, C. S. (2019). Resource use and the environment. In Lucas, J. S., Southgate, P. C., & Tucker, C. S. (Eds.), Aquaculture Farming Aquatic Animals and Plants (pp. 93–112). John Wiley & Sons Ltd.
  • Chatvijitkul, S., Boyd, C. E., Davis, D. A., & McNevin, A. A. (2017). Embodied resources in fish and shrimp feeds. Journal of the World Aquaculture Society, 48(1), 7–19. https://doi.org/10.1111/jwas.12360
  • Cınar, İ., & Koknaroglu, H. (2019). Süt sığırcılığında ırkın sürdürülebilirlik üzerine etkisi [Examination of effect of breed on sustainability of dairy cattle production]. SDU Journal of the Faculty of Agriculture/SDÜ Ziraat Fakültesi Dergisi, 14(2), 143–155.
  • Cubillo, A. M., Ferreira, J. G., Lencart-Silva, J., Taylor, N. G. H., Kennerley, A., Guilder, J., Kay, S., & Kamermans, P. (2021). Direct effects of climate change on productivity of European aquaculture. Aquaculture International, 29(4), 1561-1590. https://doi.org/10.1007/s10499-021-00694-6
  • da Silva Pires, P. G., Andretta, I., Mendéz, M. S. C., Kipper, M., de Menezes Lovatto, N., & Loureiro, B. B. (2022). Life cycle impact of industrial aquaculture systems. In C. M. Galanakis (Ed.), Sustainable Fish Production and Processing (pp. 141-172). Academic Press.
  • Davulis, J. P., Frick, G. E., & New Hampshire Agricultural Experiment Station (1977). Potential for energy conservation in feeding livestock and poultry in the United States, Station Bulletin, no. 506. New Hampshire Agricultural Experiment Station Bulletin 467. https://scholars.unh.edu/agbulletin/467
  • Demir, U. A., & Sevinç, E. (2020). Marketing and economics of aquaculture in Turkey. In Çoban, D., Demircan, M. D., & Tosun, D. D. (Eds.), Marine Aquaculture in Turkey: Advancements and Management (pp. 416–430). Turkish Marine Research Foundation (TUDAV).
  • Demircan, V. (2008). The effect of initial fattening weight on sustainability of beef cattle production in feedlots. Spanish Journal of Agricultural Research, 6(1), 17-24. https://doi.org/10.5424/sjar/2008061-290
  • Demircan, V., & Koknaroglu, H. (2007). Effect of farm size on sustainability of beef cattle production. Journal of Sustainable Agriculture, 31(1), 75–87. https://doi.org/10.1300/J064v31n01_08
  • Diken, G. (2021). Burdur ili gökkuşağı alabalığı kafes yetiştiriciliğinin proje kapasitesine göre yem tüketimi ile taşımacılığının kültürel enerji ve karbon ayak izi tahmini. 21. Ulusal Su Ürünleri Sempozyumu. Atatürk Üniversitesi Su Ürünleri Fakültesi, Erzurum, Türkiye, pp. 76–91.
  • Diken, G., & Koknaroglu, H. (2022). Projected annual production capacity affects sustainability of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) reared in concrete ponds in terms of energy use efficiency. Aquaculture, 551, 737958. https://doi.org/10.1016/j.aquaculture.2022.737958
  • Diken, G., Koknaroglu, H., & Bahrioğlu, E. (unpuslihed). Cultural energy use and energy use efficiency of European seabass (Dicentrarchus labrax Linnaeus, 1758) reared in earthen ponds up to portion size.
  • Diken, G., Köknaroğlu, H., & Can, İ. (2021). Cultural energy use and energy use efficiency of a small-scale rainbow trout (Oncorhynchus mykiss Walbaum, 1792) cage farm in the inland waters of Turkey: A case study from Karacaören-I Dam Lake. Aquaculture Studies, 21(1), 31–39. https://doi.org/10.4194/2618-6381-v21_1_04
  • Diken, G., Koknaroglu, H., & İsmail, C. (2022). Small-scale rainbow trout cage farm in the inland waters of Turkey is sustainable in terms of carbon footprint (kg CO2e). Acta Aquatica Turcica, 18(1), 131-145. https://doi.org/10.22392/actaquatr.1103100
  • FAO. (2012). Energy-smart food at FAO: An overview. Environment and Natural Resources Management Working Paper No. 53. Food and Agriculture Organization of the United Nations. Rome, Italy.
  • FAO. (2022). Food and Agriculture Organization of the United Nations Fisheries and Aquaculture Department Fishery Statistical Collections Global Aquaculture Production 2022. (FAO.). Retrieved on March 4, 2022 from https://www.fao.org/fishery/statistics-query/en/aquaculture/aquaculture_quantity
  • Feedipedia. (2022) Feedipedia: An on-line encyclopedia of animal feeds. Retrieved on May 12, 2022 from https://www.feedipedia.org/node/11698
  • Flos, R., & Reig, L. (2017). Improving energy efficiency in fisheries and aquaculture. Aquaculture Europe, 42(2), 29-34.
  • GDFA. (2022). Su Ürünleri İstatistikleri Ankara 2022. Retrieved on August 31, 2022 from https://www.tarimorman.gov.tr/BSGM/Belgeler/Icerikler/Su%20%C3%9Cr%C3%BCnleri%20Veri%20ve%20D%C3%B6k%C3%BCmanlar%C4%B1/Bsgm-istatistik.pdf
  • Google Earth. (2022). Karacören-I Dam Lake. Retrieved on May 5, 2022 from https://earth.google.com/web/search/Karaca%c3%b6ren+Baraj+G%c3%b6l%c3%bc/@37.39345781,30.89022138,502.76893175a,29838.56105953d,35y,-0h,0t,0r/data=CigiJgokCduwxQKPDEVAEUQGrduMiEBAGbDmZd0qpEdAIcgUiCR8ITVA
  • Hargreaves, J., Brummett, R., & Tucker, C. S. (2019). The future of aquaculture. In Lucas, J. S., Southgate, P. C., & Tucker, C. S. (Eds.), Aquaculture Farming Aquatic Animals and Plants (pp. 617–636). John Wiley & Sons Ltd.
  • Hatchery Feed & Management. (2021). Supplier’s News December 2, 2021 “Aller Aqua starts labeling carbon emission equivalents on its feeds”. Retrieved on December 14, 2021 from https://hatcheryfm.com/hfm-article/1678/Aller-Aqua-starts-labeling-carbon-emission-equivalents-on-its-feeds/
  • Hatchery International. (2021). News & Views November 18, 2021 “Skretting and Atlantic Sapphire partner on local feed supply venture.” Retrieved on December 08, 2021 https://www.hatcheryinternational.com/skretting-and-atlantic-sapphire-partner-on-local-feed-supply-venture/
  • Henriksson, P., Little, D. C., Troell, M. & Kleijn, R. (2010). Energy efficiency of aquaculture. Global Aquaculture Advocate, 1-6. Retrieved on August 31, 2022 from https://www.globalseafood.org/advocate/energy-efficiency-aquaculture/
  • Hognes, E. S., Ziegler, F., & Sund, V. (2011). Carbon footprint and area use of farmed Norwegian salmon. SINTEF Fisheries and Aquaculture Report: A22673. Trondheim, Norway.
  • IAFFD. (2020). Feed ingredient composition database. International Aquaculture Feed Formulation Database (IAFD). Retrieved on April 25, 2022 https://www.iaffd.com/feed.html?v=4.3
  • Koknaroglu, H. (2008). Effect of concentrate level on sustainability of beef cattle production. Journal of Sustainable Agriculture, 32, 123-136. https://doi.org/10.1080/10440040802121452
  • Koknaroglu, H. (2010). Cultural energy analyses of dairy cattle receiving different concentrate levels. Energy Conversion and Management, 51, 955-958. https://doi.org/10.1016/j.enconman.2009.11.035
  • Koknaroglu, H., & Atılgan, A. (2007). Effect of season on broiler performance and sustainability of broiler production. Journal of Sustainable Agriculture, 31, 113-124. https://doi.org/10.1300/J064v31n02_08
  • Koknaroglu, H., & Hoffman, M. P. (2019). Season affects energy input/output ratio in beef cattle production. Journal of Animal Behaviour and Biometeorology, 7, 149-154. https://doi.org/10.31893/2318-1265jabb.v7n4p149-154
  • Korkut, A. Y., Kop, A., Saygi, H., Göktepe, Ç., Yedek, Y., & Kalkan, T. (2017). General evaluation of fish feed production in Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 17(1), 223-229. https://doi.org/10.4194/1303-2712-v17_1_25
  • Kurnia, R., Soewardi, K., Setyobudiandi, I., & Dharmawan, A. H. (2019). Small scale capture fisheries sustainability analysis using emergy (embodied energy) approach. In IOP Conference Series: Earth and Environmental Science (Vol. 278, No. 1, p. 012067). IOP Publishing.
  • Liu, Y., Rosten, T. W., Henriksen, K. L., Hognes, E. S., Summerfelt, S. T., & Vinci, B. J. (2016). Comparative economic performance and carbon footprint of two farming models for producing Atlantic salmon (Salmo salar): Land-based closed containment system in freshwater and open net pen in seawater. Aquacultural Engineering, 71, 1-12. https://doi.org/10.1016/j.aquaeng.2016.01.001
  • Lutz, C. G. (2021). Assessing the carbon footprint of aquaculture. Retrieved on April 25, 2021 from https://thefishsite.com/articles/assessing-the-carbon-footprint-of-aquaculture
  • MacLeod, M. J., Hasan, M. R., Robb, D. H. F., & Mamun-Ur-Rashid, M. (2020). Quantifying greenhouse gas emissions from global aquaculture. Scientific Reports, 10(1), 11679. https://doi.org/10.1038/s41598-020-68231-8
  • Moe, A., Koehler-Munro, K., Bryan, R., Goddard, T., & Kryzanowksi, L. (2014, October). Multi-criteria decision analysis of feed formulation for laying hens. Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector, USA, pp. 8-10.
  • Muir, J. F. (2015). Fuel and energy use in the fisheries sector – approaches, inventories and strategic implications. Rome, Italy. FAO Fisheries and Aquaculture Circular No. 1080. 94p.
  • O’Brien, D., Capper, J. L., Garnsworthy, P. C., Grainger, C., & Shalloo, L. (2014). A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms. Journal of Dairy Science, 97(3), 1835-1851. https://doi.org/10.3168/jds.2013-7174
  • Parker, R. W., & Tyedmers, P. H. (2012). Life cycle environmental impacts of three products derived from wild-caught Antarctic krill (Euphausia superba). Environmental Science & Technology, 46(9), 4958-4965.
  • Pelletier, N., & Tyedmers, P. H. (2007). Feeding farmed salmon: Is organic better? Aquaculture, 272, 399-416. https://doi.org/10.1016/j.aquaculture.2007.06.024
  • Pelletier, N., Audsley, E., Brodt, S., Garnett, T., Henriksson, P., Kendall, A., Kramer, K. J., Murphy, D., Nemecek, T. & Troell, M. (2011). Energy intensity of agriculture and food systems. Annual Review of Environment and Resources, 36(1), 223–246. https://doi.org/10.1146/annurev-environ-081710-161014
  • Pimentel, D. (1980). Handbook of energy utilization in agriculture. CRC Press.
  • Rotz, C. A., Asem-Hiablie, S., Place, S. E., & Thoma, G. (2019). Environmental footprints of beef cattle production in the United States. Agricultural Systems, 169, 1-3. https://doi.org/10.3168/jds.2009-2162
  • Schmidt, J. H. (2015). Life cycle assessment of five vegetable oils. Journal of Cleaner Production, 87, 130-138.
  • Smith, E. G., Janzen, H. H., & Newlands, N. K. (2007). Energy balances of biodiesel production from soybean and canola in Canada. Canadian Journal of Plant Science, 87(4), 793–801.
  • Troell, M., Tyedmers, P., Kautsky, N., & Rönnbäck, P. (2004). Aquaculture and energy use. Encyclopedia of Energy, 1, 97-108.
  • Vellinga, T. V., Blonk, H., Marinussen, M., van Zeist, W. J., & Starmans, D. A. J. (2013). Methodology used in FeedPrint: A tool quantifying greenhouse gas emissions of feed production and utilization, No. 674. Lelystad, UK.
  • Zhang, W., Belton, B., Edwards, P., Henriksson, P. J., Little, D. C., Newton, R., & Troell, M. (2022). Aquaculture will continue to depend more on land than sea. Nature, 603, E2-E4. https://doi.org/10.1038/s41586-021-04331-3
  • Ziegler, F., Winther, U., Hognes, E. S., Emanuelsson, A., Sund, V., & Ellingsen, H. (2021). Greenhouse gas emissions of Norwegian seafoods: From comprehensive to simplified assessment. Journal of Industrial Ecology, 1-12. https://doi.org/10.1111/jiec.13150
Year 2022, Volume: 11 Issue: 4, 475 - 492, 31.12.2022
https://doi.org/10.33714/masteb.1178141

Abstract

Project Number

Yok

References

  • Adhikari, S., Lal, R., & Sahu, B. C. (2013). Carbon footprint of aquaculture in eastern India. Journal of Water and Climate Change, 4(4), 410-421. https://doi.org/10.2166/wcc.2013.028
  • Akunal, T., & Koknaroglu, H. (2021). Commercial native laying hybrids developed in Turkey are comparable to foreign hybrids in terms of performance and cultural energy use efficiency. Animal Science Papers and Reports, 39(2), 169-177.
  • Anonymous. (2021). Isparta Directorate of Provincial Agriculture and Forestry, Republic of Türkiye Ministry of Agriculture and Forestry.
  • Arslan, G., & Oguzhan Yildiz, P. (2021). Türkiye su ürünleri sektörüne genel bakış [An overview to fisheries sector in Turkey]. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 7(1), 46-57.
  • Becer Ozvarol, Z. A., & İkiz, R. (2009). Mortality ratio and stock analysis of vimba (Vimba vimba tenella (Nordmann,1840)) population in Karacaoren I Dam Lake (Burdur Turkey). Journal of Applied Biological Sciences, 3(2), 143-147.
  • Boissy, J., Aubin, J., Drissi, A., van der Werf, H. M. G., Bell, G. J., & Kaushik, S. J. (2011). Environmental impacts of plant-based salmonid diets at feed and farm scales. Aquaculture, 321(1), 61-70. https://doi.org/10.1016/j.aquaculture.2011.08.033
  • Boyd, C. E., McNevin, A. A., & Tucker, C. S. (2019). Resource use and the environment. In Lucas, J. S., Southgate, P. C., & Tucker, C. S. (Eds.), Aquaculture Farming Aquatic Animals and Plants (pp. 93–112). John Wiley & Sons Ltd.
  • Chatvijitkul, S., Boyd, C. E., Davis, D. A., & McNevin, A. A. (2017). Embodied resources in fish and shrimp feeds. Journal of the World Aquaculture Society, 48(1), 7–19. https://doi.org/10.1111/jwas.12360
  • Cınar, İ., & Koknaroglu, H. (2019). Süt sığırcılığında ırkın sürdürülebilirlik üzerine etkisi [Examination of effect of breed on sustainability of dairy cattle production]. SDU Journal of the Faculty of Agriculture/SDÜ Ziraat Fakültesi Dergisi, 14(2), 143–155.
  • Cubillo, A. M., Ferreira, J. G., Lencart-Silva, J., Taylor, N. G. H., Kennerley, A., Guilder, J., Kay, S., & Kamermans, P. (2021). Direct effects of climate change on productivity of European aquaculture. Aquaculture International, 29(4), 1561-1590. https://doi.org/10.1007/s10499-021-00694-6
  • da Silva Pires, P. G., Andretta, I., Mendéz, M. S. C., Kipper, M., de Menezes Lovatto, N., & Loureiro, B. B. (2022). Life cycle impact of industrial aquaculture systems. In C. M. Galanakis (Ed.), Sustainable Fish Production and Processing (pp. 141-172). Academic Press.
  • Davulis, J. P., Frick, G. E., & New Hampshire Agricultural Experiment Station (1977). Potential for energy conservation in feeding livestock and poultry in the United States, Station Bulletin, no. 506. New Hampshire Agricultural Experiment Station Bulletin 467. https://scholars.unh.edu/agbulletin/467
  • Demir, U. A., & Sevinç, E. (2020). Marketing and economics of aquaculture in Turkey. In Çoban, D., Demircan, M. D., & Tosun, D. D. (Eds.), Marine Aquaculture in Turkey: Advancements and Management (pp. 416–430). Turkish Marine Research Foundation (TUDAV).
  • Demircan, V. (2008). The effect of initial fattening weight on sustainability of beef cattle production in feedlots. Spanish Journal of Agricultural Research, 6(1), 17-24. https://doi.org/10.5424/sjar/2008061-290
  • Demircan, V., & Koknaroglu, H. (2007). Effect of farm size on sustainability of beef cattle production. Journal of Sustainable Agriculture, 31(1), 75–87. https://doi.org/10.1300/J064v31n01_08
  • Diken, G. (2021). Burdur ili gökkuşağı alabalığı kafes yetiştiriciliğinin proje kapasitesine göre yem tüketimi ile taşımacılığının kültürel enerji ve karbon ayak izi tahmini. 21. Ulusal Su Ürünleri Sempozyumu. Atatürk Üniversitesi Su Ürünleri Fakültesi, Erzurum, Türkiye, pp. 76–91.
  • Diken, G., & Koknaroglu, H. (2022). Projected annual production capacity affects sustainability of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) reared in concrete ponds in terms of energy use efficiency. Aquaculture, 551, 737958. https://doi.org/10.1016/j.aquaculture.2022.737958
  • Diken, G., Koknaroglu, H., & Bahrioğlu, E. (unpuslihed). Cultural energy use and energy use efficiency of European seabass (Dicentrarchus labrax Linnaeus, 1758) reared in earthen ponds up to portion size.
  • Diken, G., Köknaroğlu, H., & Can, İ. (2021). Cultural energy use and energy use efficiency of a small-scale rainbow trout (Oncorhynchus mykiss Walbaum, 1792) cage farm in the inland waters of Turkey: A case study from Karacaören-I Dam Lake. Aquaculture Studies, 21(1), 31–39. https://doi.org/10.4194/2618-6381-v21_1_04
  • Diken, G., Koknaroglu, H., & İsmail, C. (2022). Small-scale rainbow trout cage farm in the inland waters of Turkey is sustainable in terms of carbon footprint (kg CO2e). Acta Aquatica Turcica, 18(1), 131-145. https://doi.org/10.22392/actaquatr.1103100
  • FAO. (2012). Energy-smart food at FAO: An overview. Environment and Natural Resources Management Working Paper No. 53. Food and Agriculture Organization of the United Nations. Rome, Italy.
  • FAO. (2022). Food and Agriculture Organization of the United Nations Fisheries and Aquaculture Department Fishery Statistical Collections Global Aquaculture Production 2022. (FAO.). Retrieved on March 4, 2022 from https://www.fao.org/fishery/statistics-query/en/aquaculture/aquaculture_quantity
  • Feedipedia. (2022) Feedipedia: An on-line encyclopedia of animal feeds. Retrieved on May 12, 2022 from https://www.feedipedia.org/node/11698
  • Flos, R., & Reig, L. (2017). Improving energy efficiency in fisheries and aquaculture. Aquaculture Europe, 42(2), 29-34.
  • GDFA. (2022). Su Ürünleri İstatistikleri Ankara 2022. Retrieved on August 31, 2022 from https://www.tarimorman.gov.tr/BSGM/Belgeler/Icerikler/Su%20%C3%9Cr%C3%BCnleri%20Veri%20ve%20D%C3%B6k%C3%BCmanlar%C4%B1/Bsgm-istatistik.pdf
  • Google Earth. (2022). Karacören-I Dam Lake. Retrieved on May 5, 2022 from https://earth.google.com/web/search/Karaca%c3%b6ren+Baraj+G%c3%b6l%c3%bc/@37.39345781,30.89022138,502.76893175a,29838.56105953d,35y,-0h,0t,0r/data=CigiJgokCduwxQKPDEVAEUQGrduMiEBAGbDmZd0qpEdAIcgUiCR8ITVA
  • Hargreaves, J., Brummett, R., & Tucker, C. S. (2019). The future of aquaculture. In Lucas, J. S., Southgate, P. C., & Tucker, C. S. (Eds.), Aquaculture Farming Aquatic Animals and Plants (pp. 617–636). John Wiley & Sons Ltd.
  • Hatchery Feed & Management. (2021). Supplier’s News December 2, 2021 “Aller Aqua starts labeling carbon emission equivalents on its feeds”. Retrieved on December 14, 2021 from https://hatcheryfm.com/hfm-article/1678/Aller-Aqua-starts-labeling-carbon-emission-equivalents-on-its-feeds/
  • Hatchery International. (2021). News & Views November 18, 2021 “Skretting and Atlantic Sapphire partner on local feed supply venture.” Retrieved on December 08, 2021 https://www.hatcheryinternational.com/skretting-and-atlantic-sapphire-partner-on-local-feed-supply-venture/
  • Henriksson, P., Little, D. C., Troell, M. & Kleijn, R. (2010). Energy efficiency of aquaculture. Global Aquaculture Advocate, 1-6. Retrieved on August 31, 2022 from https://www.globalseafood.org/advocate/energy-efficiency-aquaculture/
  • Hognes, E. S., Ziegler, F., & Sund, V. (2011). Carbon footprint and area use of farmed Norwegian salmon. SINTEF Fisheries and Aquaculture Report: A22673. Trondheim, Norway.
  • IAFFD. (2020). Feed ingredient composition database. International Aquaculture Feed Formulation Database (IAFD). Retrieved on April 25, 2022 https://www.iaffd.com/feed.html?v=4.3
  • Koknaroglu, H. (2008). Effect of concentrate level on sustainability of beef cattle production. Journal of Sustainable Agriculture, 32, 123-136. https://doi.org/10.1080/10440040802121452
  • Koknaroglu, H. (2010). Cultural energy analyses of dairy cattle receiving different concentrate levels. Energy Conversion and Management, 51, 955-958. https://doi.org/10.1016/j.enconman.2009.11.035
  • Koknaroglu, H., & Atılgan, A. (2007). Effect of season on broiler performance and sustainability of broiler production. Journal of Sustainable Agriculture, 31, 113-124. https://doi.org/10.1300/J064v31n02_08
  • Koknaroglu, H., & Hoffman, M. P. (2019). Season affects energy input/output ratio in beef cattle production. Journal of Animal Behaviour and Biometeorology, 7, 149-154. https://doi.org/10.31893/2318-1265jabb.v7n4p149-154
  • Korkut, A. Y., Kop, A., Saygi, H., Göktepe, Ç., Yedek, Y., & Kalkan, T. (2017). General evaluation of fish feed production in Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 17(1), 223-229. https://doi.org/10.4194/1303-2712-v17_1_25
  • Kurnia, R., Soewardi, K., Setyobudiandi, I., & Dharmawan, A. H. (2019). Small scale capture fisheries sustainability analysis using emergy (embodied energy) approach. In IOP Conference Series: Earth and Environmental Science (Vol. 278, No. 1, p. 012067). IOP Publishing.
  • Liu, Y., Rosten, T. W., Henriksen, K. L., Hognes, E. S., Summerfelt, S. T., & Vinci, B. J. (2016). Comparative economic performance and carbon footprint of two farming models for producing Atlantic salmon (Salmo salar): Land-based closed containment system in freshwater and open net pen in seawater. Aquacultural Engineering, 71, 1-12. https://doi.org/10.1016/j.aquaeng.2016.01.001
  • Lutz, C. G. (2021). Assessing the carbon footprint of aquaculture. Retrieved on April 25, 2021 from https://thefishsite.com/articles/assessing-the-carbon-footprint-of-aquaculture
  • MacLeod, M. J., Hasan, M. R., Robb, D. H. F., & Mamun-Ur-Rashid, M. (2020). Quantifying greenhouse gas emissions from global aquaculture. Scientific Reports, 10(1), 11679. https://doi.org/10.1038/s41598-020-68231-8
  • Moe, A., Koehler-Munro, K., Bryan, R., Goddard, T., & Kryzanowksi, L. (2014, October). Multi-criteria decision analysis of feed formulation for laying hens. Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector, USA, pp. 8-10.
  • Muir, J. F. (2015). Fuel and energy use in the fisheries sector – approaches, inventories and strategic implications. Rome, Italy. FAO Fisheries and Aquaculture Circular No. 1080. 94p.
  • O’Brien, D., Capper, J. L., Garnsworthy, P. C., Grainger, C., & Shalloo, L. (2014). A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms. Journal of Dairy Science, 97(3), 1835-1851. https://doi.org/10.3168/jds.2013-7174
  • Parker, R. W., & Tyedmers, P. H. (2012). Life cycle environmental impacts of three products derived from wild-caught Antarctic krill (Euphausia superba). Environmental Science & Technology, 46(9), 4958-4965.
  • Pelletier, N., & Tyedmers, P. H. (2007). Feeding farmed salmon: Is organic better? Aquaculture, 272, 399-416. https://doi.org/10.1016/j.aquaculture.2007.06.024
  • Pelletier, N., Audsley, E., Brodt, S., Garnett, T., Henriksson, P., Kendall, A., Kramer, K. J., Murphy, D., Nemecek, T. & Troell, M. (2011). Energy intensity of agriculture and food systems. Annual Review of Environment and Resources, 36(1), 223–246. https://doi.org/10.1146/annurev-environ-081710-161014
  • Pimentel, D. (1980). Handbook of energy utilization in agriculture. CRC Press.
  • Rotz, C. A., Asem-Hiablie, S., Place, S. E., & Thoma, G. (2019). Environmental footprints of beef cattle production in the United States. Agricultural Systems, 169, 1-3. https://doi.org/10.3168/jds.2009-2162
  • Schmidt, J. H. (2015). Life cycle assessment of five vegetable oils. Journal of Cleaner Production, 87, 130-138.
  • Smith, E. G., Janzen, H. H., & Newlands, N. K. (2007). Energy balances of biodiesel production from soybean and canola in Canada. Canadian Journal of Plant Science, 87(4), 793–801.
  • Troell, M., Tyedmers, P., Kautsky, N., & Rönnbäck, P. (2004). Aquaculture and energy use. Encyclopedia of Energy, 1, 97-108.
  • Vellinga, T. V., Blonk, H., Marinussen, M., van Zeist, W. J., & Starmans, D. A. J. (2013). Methodology used in FeedPrint: A tool quantifying greenhouse gas emissions of feed production and utilization, No. 674. Lelystad, UK.
  • Zhang, W., Belton, B., Edwards, P., Henriksson, P. J., Little, D. C., Newton, R., & Troell, M. (2022). Aquaculture will continue to depend more on land than sea. Nature, 603, E2-E4. https://doi.org/10.1038/s41586-021-04331-3
  • Ziegler, F., Winther, U., Hognes, E. S., Emanuelsson, A., Sund, V., & Ellingsen, H. (2021). Greenhouse gas emissions of Norwegian seafoods: From comprehensive to simplified assessment. Journal of Industrial Ecology, 1-12. https://doi.org/10.1111/jiec.13150
There are 55 citations in total.

Details

Primary Language English
Subjects Environmentally Sustainable Engineering, Fisheries Management
Journal Section Research Article
Authors

Gürkan Diken 0000-0002-3386-3676

Project Number Yok
Early Pub Date September 30, 2022
Publication Date December 31, 2022
Submission Date September 21, 2022
Acceptance Date November 16, 2022
Published in Issue Year 2022 Volume: 11 Issue: 4

Cite

APA Diken, G. (2022). Sustainability of Karacaören-I Dam Lake Rainbow Trout Cage Farming (Türkiye) in Terms of Cultural Energy and Carbon Footprint Expended on Compound Diet and Transportation. Marine Science and Technology Bulletin, 11(4), 475-492. https://doi.org/10.33714/masteb.1178141
AMA Diken G. Sustainability of Karacaören-I Dam Lake Rainbow Trout Cage Farming (Türkiye) in Terms of Cultural Energy and Carbon Footprint Expended on Compound Diet and Transportation. Mar. Sci. Tech. Bull. December 2022;11(4):475-492. doi:10.33714/masteb.1178141
Chicago Diken, Gürkan. “Sustainability of Karacaören-I Dam Lake Rainbow Trout Cage Farming (Türkiye) in Terms of Cultural Energy and Carbon Footprint Expended on Compound Diet and Transportation”. Marine Science and Technology Bulletin 11, no. 4 (December 2022): 475-92. https://doi.org/10.33714/masteb.1178141.
EndNote Diken G (December 1, 2022) Sustainability of Karacaören-I Dam Lake Rainbow Trout Cage Farming (Türkiye) in Terms of Cultural Energy and Carbon Footprint Expended on Compound Diet and Transportation. Marine Science and Technology Bulletin 11 4 475–492.
IEEE G. Diken, “Sustainability of Karacaören-I Dam Lake Rainbow Trout Cage Farming (Türkiye) in Terms of Cultural Energy and Carbon Footprint Expended on Compound Diet and Transportation”, Mar. Sci. Tech. Bull., vol. 11, no. 4, pp. 475–492, 2022, doi: 10.33714/masteb.1178141.
ISNAD Diken, Gürkan. “Sustainability of Karacaören-I Dam Lake Rainbow Trout Cage Farming (Türkiye) in Terms of Cultural Energy and Carbon Footprint Expended on Compound Diet and Transportation”. Marine Science and Technology Bulletin 11/4 (December 2022), 475-492. https://doi.org/10.33714/masteb.1178141.
JAMA Diken G. Sustainability of Karacaören-I Dam Lake Rainbow Trout Cage Farming (Türkiye) in Terms of Cultural Energy and Carbon Footprint Expended on Compound Diet and Transportation. Mar. Sci. Tech. Bull. 2022;11:475–492.
MLA Diken, Gürkan. “Sustainability of Karacaören-I Dam Lake Rainbow Trout Cage Farming (Türkiye) in Terms of Cultural Energy and Carbon Footprint Expended on Compound Diet and Transportation”. Marine Science and Technology Bulletin, vol. 11, no. 4, 2022, pp. 475-92, doi:10.33714/masteb.1178141.
Vancouver Diken G. Sustainability of Karacaören-I Dam Lake Rainbow Trout Cage Farming (Türkiye) in Terms of Cultural Energy and Carbon Footprint Expended on Compound Diet and Transportation. Mar. Sci. Tech. Bull. 2022;11(4):475-92.

27116