Araştırma Makalesi
BibTex RIS Kaynak Göster

Proposal of Invader Pontederia crassipes as a Savior of Micro and Macro Size Plastic Pollution

Yıl 2024, Cilt: 13 Sayı: 2, 135 - 141, 30.06.2024
https://doi.org/10.33714/masteb.1479122

Öz

This study is the first report evaluating the microplastic (MP) and macroplastics capture potential of Pontederia crassipes. Total of 3691 (508 microplastic and 3183 macroplastic) particles were extracted from the roots of 12 examined specimens. Mean macroplastic abundance in the roots was found as 265±44 macroplastic/specimen. Majority of the extracted macroplastics were fragment in shape, blue in color. Mean microplastic abundance was found as 42±23 MPs/specimen. Majority of the extracted microplastics were fragment in shape, blue in color and less than 500 μm in size. Results of this preliminary study showed that this species have significant ability to adsorb micro and macroplastics by the roots which makes them perfect employees for integrated floating systems.

Kaynakça

  • Ceschin, S., Mariani, F., Di Lernia, D., Venditti, I., Pelella, E., & Iannelli, M. A. (2023). Effects of microplastic contamination on the aquatic plant Lemna minuta (Least Duckweed). Plants, 12(1), 207. https://doi.org/10.3390/plants12010207
  • de Oliveira, M., Atalla, A. A., Frihling, B. E. F., Cavalheri, P. S., Migliolo, L., & Filho, F. J. C. M. (2019). Ibuprofen and caffeine removal in vertical flow and free-floating macrophyte constructed wetlands with Heliconia rostrata and Eichornia crassipes. Chemical Engineering Journal, 373, 458–467. https://doi.org/10.1016/j.cej.2019.05.064
  • Dovidat, L. C., Brinkmann, B. W., Vijver, M. G., & Bosker, T. (2020). Plastic particles adsorb to the roots of freshwater vascular plant Spirodela polyrhiza but do not impair growth. Limnology and Oceanography Letters, 5(1), 37–45. https://doi.org/10.1002/lol2.10118
  • Eid, E. M., Shaltout, K. H., Almuqrin, A. H., Aloraini, D. A., Khedher, K. M., Taher, M. A., Alfarhan, A. H., Picó, Y., & Barcelo, D. (2021). Uptake prediction of nine heavy metals by Eichhornia crassipes grown in irrigation canals: A biomonitoring approach. Science of the Total Environment, 782, 146887. https://doi.org/10.1016/j.scitotenv.2021.146887
  • Greenfield, B. K., Siemering, G. S., Andrews, J. C., Rajan, M., Andrews, S. P., & Spencer, D. F. (2007). Mechanical shredding of water hyacinth (Eichhornia crassipes): Effects on water quality in the Sacramento-San Joaquin River Delta, California. Estuaries and Coasts, 30, 627–640. https://doi.org/10.1007/BF02841960
  • Kalčíková, G. (2020). Aquatic vascular plants – A forgotten piece of nature in microplastic research. Environmental Pollution, 262, 114354. https://doi.org/10.1016/j.envpol.2020.114354
  • Kılıç, E., & Yücel, N. (2019). Determination of spatial and temporal changes in water quality at Asi River using multivariate statistical techniques. Turkish Journal of Fisheries and Aquatic Sciences. 19(9), 727-737. http://doi.org/10.4194/1303-2712-v19_9_02
  • Kılıç, E., Yücel, N., & Mübarek Şahutoğlu, S. (2022). First record of microplastic occurrence at the commercial fish from Orontes River. Environmental Pollution. 307, 119576. https://doi.org/10.1016/j.envpol.2022.119576
  • Kumari, M., & Tripathi, B. D. (2014). Effect of aeration and mixed culture of Eichhornia crassipes and Salvinia natans on removal of wastewater pollutants. Ecological Engineering, 62(3), 48–53. https://doi.org/10.1016/j.ecoleng.2013.10.007
  • Li, J., Liu, H., & Chen, J. P. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362-374. https://doi.org/10.1016/j.watres.2017.12.056
  • Lozano, Y. M., & Rillig, M. C. (2020). Effects of microplastic fibers and drought on plant communities. Environmental Science & Technology, 54(10), 6166–6173. https://doi.org/10.1021/acs.est.0c01051
  • Mammo, F. K., Amoah, I. D., Gani, K. M., Pillay, L., Ratha, S. K., Bux, F., & Kumari, S. (2020). Microplastics in the environment: interactions with microbes and chemical contaminants. Science of the Total Environment, 743, 140518. https://doi.org/10.1016/j.scitotenv.2020.140518
  • Mateos-Cárdenas, A., Scott, D. T., Seitmaganbetova, G., van, van P., John, O. H., & Marcel, A. K. J. (2019). Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). Science of the Total Environment, 689, 413–421. https://doi.org/10.1016/j.scitotenv.2019.06.359
  • Miloloža, M., Grgić, D. K., Bolanča, T., Ukić, Š., Cvetnić, M., Bulatović, V. O., Dionysiou, D. D., & Kušić, H. (2021). Ecotoxicological assessment of microplastics in freshwater sources—A review. Water, 13(1), 56. https://doi.org/10.3390/w13010056
  • Moore, C. J., Lattin, G. L., & Zellers, A. F. (2005) Working our way upstream: A snapshot of land-based contributions of plastic and other trash to coastal waters and beaches of southern California. Algalita Marine Research Foundation.
  • Penfound, W. T., & Earle, T. T. (1948). The biology of the water hyacinth. Ecological Monographs, 18(4), 447-472. https://doi.org/10.2307/1948585
  • Rodríguez, M., Brisson, J., Rueda, G., & Rodríguez, M. S. (2012). Water quality improvement of a reservoir invaded by an exotic macrophyte. Invasive Plant Science and Management, 5(2), 290-299. https://doi.org/10.1614/IPSM-D-11-00023.1
  • Rommens, W., Maes, J., Dekeza, N., Inghelbrecht, P., Nhiwatiwa, T., Holsters, E., Ollevier, F., Marshall, B., & Brendonck, L. (2003) The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water quality. Archiv Fur Hydrobiologie, 158, 373–388. https://doi.org/10.1127/0003-9136/2003/0158-0373
  • Scherer, C., Weber, A., Lambert, S., & Wagner, M. (2018). Interactions of microplastics with freshwater biota. In Wagner, M., & Lambert, S. (Eds.), Freshwater Microplastics. The Handbook of Environmental Chemistry, vol 58 (pp. 153–180). Springer. https://doi.org/10.1007/978-3-319-61615-5_8
  • Thompson, R. C., Moore, C. J., vom Saal, F. S., & Swan, S. H. (2009). Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153-2166. https://doi.org/10.1098/rstb.2009.0053
  • Tiwari, S., Dixit, S., & Verma, N. (2007) An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes. Environmental Monitoring and Assessment, 129, 253–256. https://doi.org/10.1007/s10661-006-9358-7
  • Uremis, I., Uludağ, A., Arslan, Z. F., & Abaci, O. (2014). A new record for the flora of Turkey: Eichhornia crassipes (Mart.) Solms (Pontederiaceae), Bulletin OEPP/EPPO Bulletin, 44(1), 83-86.
  • Villamagna, A. M., & Murphy, B. R. (2010). Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): A review. Freshwater Biology, 55(2), 282–298. https://doi.org/10.1111/j.1365-2427.2009.02294.x
  • Virginia Invasive Species. (2024). Water hyacinth. Retrieved on March 7, 2024, from: https://www.invasivespeciesva.org/species/water-hyacinth#:~:text=Water%20hyacinth%20is%20an%20aquatic,Australia%2C%20India%20and%20North%20America
  • Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C, Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaal, A. D., Winther-Nielsen, M., & Reifferscheid, G. (2014). Microplastics in freshwater ecosystems: What we know and what we need to know. Environmental Sciences Europe, 26, 12. https://doi.org/10.1186/s12302-014-0012-7
  • Wang, J., Huang, M., Wang, Q., Sun, Y., Zhao, Y., & Huang, Y. (2020). LDPE microplastics significantly alter the temporal turnover of soil microbial communities. Science of The Total Environment, 726, 138682. https://doi.org/10.1016/j.scitotenv.2020.138682
  • Yang, C., Yin, L., Guo, Y., Han, T., Wang, Y., Liu, G., Maqbool, F., Xu, L., & Zhao, J. (2023). Insight into the absorption and migration of polystyrene nanoplastics in Eichhornia crassipes and related photosynthetic responses. Science of The Total Environment, 892, 164518. https://doi.org/10.1016/j.scitotenv.2023.164518
  • Yu, H., Liu, M., Gang, D., Peng, J., Hu, C., & Qu, J. (2022). Polyethylene microplastics interfere with the nutrient cycle in water-plant-sediment systems. Water Research, 214, 118191. https://doi.org/10.1016/j.watres.2022.118191
  • Zimmels, Y., Kirzhner, F., & Malkovskaja, A. (2007). Advanced extraction and lower bounds for removal of pollutants from wastewater by water plants. Water Environment Research, 79, 287–296. https://doi.org/10.2175/106143005X73037
  • Zimmels, Y., Kirzhner, F., & Malkovskaja, A. (2006). Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel. Journal of Environmental Management, 81(4), 420–428. https://doi.org/10.1016/j.jenvman.2005.11.014
Yıl 2024, Cilt: 13 Sayı: 2, 135 - 141, 30.06.2024
https://doi.org/10.33714/masteb.1479122

Öz

Kaynakça

  • Ceschin, S., Mariani, F., Di Lernia, D., Venditti, I., Pelella, E., & Iannelli, M. A. (2023). Effects of microplastic contamination on the aquatic plant Lemna minuta (Least Duckweed). Plants, 12(1), 207. https://doi.org/10.3390/plants12010207
  • de Oliveira, M., Atalla, A. A., Frihling, B. E. F., Cavalheri, P. S., Migliolo, L., & Filho, F. J. C. M. (2019). Ibuprofen and caffeine removal in vertical flow and free-floating macrophyte constructed wetlands with Heliconia rostrata and Eichornia crassipes. Chemical Engineering Journal, 373, 458–467. https://doi.org/10.1016/j.cej.2019.05.064
  • Dovidat, L. C., Brinkmann, B. W., Vijver, M. G., & Bosker, T. (2020). Plastic particles adsorb to the roots of freshwater vascular plant Spirodela polyrhiza but do not impair growth. Limnology and Oceanography Letters, 5(1), 37–45. https://doi.org/10.1002/lol2.10118
  • Eid, E. M., Shaltout, K. H., Almuqrin, A. H., Aloraini, D. A., Khedher, K. M., Taher, M. A., Alfarhan, A. H., Picó, Y., & Barcelo, D. (2021). Uptake prediction of nine heavy metals by Eichhornia crassipes grown in irrigation canals: A biomonitoring approach. Science of the Total Environment, 782, 146887. https://doi.org/10.1016/j.scitotenv.2021.146887
  • Greenfield, B. K., Siemering, G. S., Andrews, J. C., Rajan, M., Andrews, S. P., & Spencer, D. F. (2007). Mechanical shredding of water hyacinth (Eichhornia crassipes): Effects on water quality in the Sacramento-San Joaquin River Delta, California. Estuaries and Coasts, 30, 627–640. https://doi.org/10.1007/BF02841960
  • Kalčíková, G. (2020). Aquatic vascular plants – A forgotten piece of nature in microplastic research. Environmental Pollution, 262, 114354. https://doi.org/10.1016/j.envpol.2020.114354
  • Kılıç, E., & Yücel, N. (2019). Determination of spatial and temporal changes in water quality at Asi River using multivariate statistical techniques. Turkish Journal of Fisheries and Aquatic Sciences. 19(9), 727-737. http://doi.org/10.4194/1303-2712-v19_9_02
  • Kılıç, E., Yücel, N., & Mübarek Şahutoğlu, S. (2022). First record of microplastic occurrence at the commercial fish from Orontes River. Environmental Pollution. 307, 119576. https://doi.org/10.1016/j.envpol.2022.119576
  • Kumari, M., & Tripathi, B. D. (2014). Effect of aeration and mixed culture of Eichhornia crassipes and Salvinia natans on removal of wastewater pollutants. Ecological Engineering, 62(3), 48–53. https://doi.org/10.1016/j.ecoleng.2013.10.007
  • Li, J., Liu, H., & Chen, J. P. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362-374. https://doi.org/10.1016/j.watres.2017.12.056
  • Lozano, Y. M., & Rillig, M. C. (2020). Effects of microplastic fibers and drought on plant communities. Environmental Science & Technology, 54(10), 6166–6173. https://doi.org/10.1021/acs.est.0c01051
  • Mammo, F. K., Amoah, I. D., Gani, K. M., Pillay, L., Ratha, S. K., Bux, F., & Kumari, S. (2020). Microplastics in the environment: interactions with microbes and chemical contaminants. Science of the Total Environment, 743, 140518. https://doi.org/10.1016/j.scitotenv.2020.140518
  • Mateos-Cárdenas, A., Scott, D. T., Seitmaganbetova, G., van, van P., John, O. H., & Marcel, A. K. J. (2019). Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). Science of the Total Environment, 689, 413–421. https://doi.org/10.1016/j.scitotenv.2019.06.359
  • Miloloža, M., Grgić, D. K., Bolanča, T., Ukić, Š., Cvetnić, M., Bulatović, V. O., Dionysiou, D. D., & Kušić, H. (2021). Ecotoxicological assessment of microplastics in freshwater sources—A review. Water, 13(1), 56. https://doi.org/10.3390/w13010056
  • Moore, C. J., Lattin, G. L., & Zellers, A. F. (2005) Working our way upstream: A snapshot of land-based contributions of plastic and other trash to coastal waters and beaches of southern California. Algalita Marine Research Foundation.
  • Penfound, W. T., & Earle, T. T. (1948). The biology of the water hyacinth. Ecological Monographs, 18(4), 447-472. https://doi.org/10.2307/1948585
  • Rodríguez, M., Brisson, J., Rueda, G., & Rodríguez, M. S. (2012). Water quality improvement of a reservoir invaded by an exotic macrophyte. Invasive Plant Science and Management, 5(2), 290-299. https://doi.org/10.1614/IPSM-D-11-00023.1
  • Rommens, W., Maes, J., Dekeza, N., Inghelbrecht, P., Nhiwatiwa, T., Holsters, E., Ollevier, F., Marshall, B., & Brendonck, L. (2003) The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water quality. Archiv Fur Hydrobiologie, 158, 373–388. https://doi.org/10.1127/0003-9136/2003/0158-0373
  • Scherer, C., Weber, A., Lambert, S., & Wagner, M. (2018). Interactions of microplastics with freshwater biota. In Wagner, M., & Lambert, S. (Eds.), Freshwater Microplastics. The Handbook of Environmental Chemistry, vol 58 (pp. 153–180). Springer. https://doi.org/10.1007/978-3-319-61615-5_8
  • Thompson, R. C., Moore, C. J., vom Saal, F. S., & Swan, S. H. (2009). Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153-2166. https://doi.org/10.1098/rstb.2009.0053
  • Tiwari, S., Dixit, S., & Verma, N. (2007) An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes. Environmental Monitoring and Assessment, 129, 253–256. https://doi.org/10.1007/s10661-006-9358-7
  • Uremis, I., Uludağ, A., Arslan, Z. F., & Abaci, O. (2014). A new record for the flora of Turkey: Eichhornia crassipes (Mart.) Solms (Pontederiaceae), Bulletin OEPP/EPPO Bulletin, 44(1), 83-86.
  • Villamagna, A. M., & Murphy, B. R. (2010). Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): A review. Freshwater Biology, 55(2), 282–298. https://doi.org/10.1111/j.1365-2427.2009.02294.x
  • Virginia Invasive Species. (2024). Water hyacinth. Retrieved on March 7, 2024, from: https://www.invasivespeciesva.org/species/water-hyacinth#:~:text=Water%20hyacinth%20is%20an%20aquatic,Australia%2C%20India%20and%20North%20America
  • Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C, Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaal, A. D., Winther-Nielsen, M., & Reifferscheid, G. (2014). Microplastics in freshwater ecosystems: What we know and what we need to know. Environmental Sciences Europe, 26, 12. https://doi.org/10.1186/s12302-014-0012-7
  • Wang, J., Huang, M., Wang, Q., Sun, Y., Zhao, Y., & Huang, Y. (2020). LDPE microplastics significantly alter the temporal turnover of soil microbial communities. Science of The Total Environment, 726, 138682. https://doi.org/10.1016/j.scitotenv.2020.138682
  • Yang, C., Yin, L., Guo, Y., Han, T., Wang, Y., Liu, G., Maqbool, F., Xu, L., & Zhao, J. (2023). Insight into the absorption and migration of polystyrene nanoplastics in Eichhornia crassipes and related photosynthetic responses. Science of The Total Environment, 892, 164518. https://doi.org/10.1016/j.scitotenv.2023.164518
  • Yu, H., Liu, M., Gang, D., Peng, J., Hu, C., & Qu, J. (2022). Polyethylene microplastics interfere with the nutrient cycle in water-plant-sediment systems. Water Research, 214, 118191. https://doi.org/10.1016/j.watres.2022.118191
  • Zimmels, Y., Kirzhner, F., & Malkovskaja, A. (2007). Advanced extraction and lower bounds for removal of pollutants from wastewater by water plants. Water Environment Research, 79, 287–296. https://doi.org/10.2175/106143005X73037
  • Zimmels, Y., Kirzhner, F., & Malkovskaja, A. (2006). Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel. Journal of Environmental Management, 81(4), 420–428. https://doi.org/10.1016/j.jenvman.2005.11.014
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Su Kalitesi ve Su Kirliliği
Bölüm Makaleler
Yazarlar

Ece Kılıç 0000-0003-1953-5008

Nebil Yücel 0000-0003-2531-0198

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 6 Mayıs 2024
Kabul Tarihi 28 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 2

Kaynak Göster

APA Kılıç, E., & Yücel, N. (2024). Proposal of Invader Pontederia crassipes as a Savior of Micro and Macro Size Plastic Pollution. Marine Science and Technology Bulletin, 13(2), 135-141. https://doi.org/10.33714/masteb.1479122
AMA Kılıç E, Yücel N. Proposal of Invader Pontederia crassipes as a Savior of Micro and Macro Size Plastic Pollution. Mar. Sci. Tech. Bull. Haziran 2024;13(2):135-141. doi:10.33714/masteb.1479122
Chicago Kılıç, Ece, ve Nebil Yücel. “Proposal of Invader Pontederia Crassipes As a Savior of Micro and Macro Size Plastic Pollution”. Marine Science and Technology Bulletin 13, sy. 2 (Haziran 2024): 135-41. https://doi.org/10.33714/masteb.1479122.
EndNote Kılıç E, Yücel N (01 Haziran 2024) Proposal of Invader Pontederia crassipes as a Savior of Micro and Macro Size Plastic Pollution. Marine Science and Technology Bulletin 13 2 135–141.
IEEE E. Kılıç ve N. Yücel, “Proposal of Invader Pontederia crassipes as a Savior of Micro and Macro Size Plastic Pollution”, Mar. Sci. Tech. Bull., c. 13, sy. 2, ss. 135–141, 2024, doi: 10.33714/masteb.1479122.
ISNAD Kılıç, Ece - Yücel, Nebil. “Proposal of Invader Pontederia Crassipes As a Savior of Micro and Macro Size Plastic Pollution”. Marine Science and Technology Bulletin 13/2 (Haziran 2024), 135-141. https://doi.org/10.33714/masteb.1479122.
JAMA Kılıç E, Yücel N. Proposal of Invader Pontederia crassipes as a Savior of Micro and Macro Size Plastic Pollution. Mar. Sci. Tech. Bull. 2024;13:135–141.
MLA Kılıç, Ece ve Nebil Yücel. “Proposal of Invader Pontederia Crassipes As a Savior of Micro and Macro Size Plastic Pollution”. Marine Science and Technology Bulletin, c. 13, sy. 2, 2024, ss. 135-41, doi:10.33714/masteb.1479122.
Vancouver Kılıç E, Yücel N. Proposal of Invader Pontederia crassipes as a Savior of Micro and Macro Size Plastic Pollution. Mar. Sci. Tech. Bull. 2024;13(2):135-41.

27116