Research Article
BibTex RIS Cite

Rings Whose Certain Modules are Dual Self-CS-Baer

Year 2024, , 113 - 118, 24.09.2024
https://doi.org/10.36753/mathenot.1461857

Abstract

In this work, we characterize some rings in terms of dual self-CS-Baer modules (briefly, ds-CS-Baer modules). We prove that any ring $R$ is a left and right artinian serial ring with $J^2(R)=0$ iff $R\oplus M$ is ds-CS-Baer for every right $R$-module $M$. If $R$ is a commutative ring, then we prove that $R$ is an artinian serial ring iff $R$ is perfect and every $R$-module is a direct sum of ds-CS-Baer $R$-modules. Also, we show that $R$ is a right perfect ring iff all countably generated free right $R$-modules are ds-CS-Baer.

References

  • [1] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting Modules: Supplements and Projectivity in Module Theory. Frontiers in Mathematics, Birkhäuser (2006).
  • [2] Mohamed, S. H., Müller, B. J.: Continuous and Discrete Modules. London Mathematical Society Lecture Note Series, Vol. 147, Cambridge University Press (1990).
  • [3] Crivei, S., Keskin Tütüncü, D., Radu, S. M., Tribak, R.: CS-Baer and dual CS-Baer objects in abelian categories. Journal of Algebra and Its Applications. 22(10), 2350220 (2023).
  • [4] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. 2nd edition, Springer-Verlag, New York (1992).
  • [5] Crivei, S., Radu, S. M.: CS-Rickart and dual CS-Rickart objects in abelian categories. Bulletin of Belgian Mathematical Society-Simon Stevin. 29(1), 99–122 (2022).
  • [6] Tribak, R.: Dual CS-Rickart modules over Dedekind domains. Algebras and Representation Theory. 23, 229–250 (2020).
  • [7] Keskin, D., Smith, P. F., Xue,W.: Rings whose modules are ⊕-supplemented. Journal of Algebra. 218(2), 470–487 (1999).
  • [8] Büyükaşık, E., Lomp, C.: On recent generalization of semiperfect rings. Bulletin of the Australian Mathematical Society. 78(2), 317–325 (2008).
  • [9] Warfield, R. B.: Serial rings and finitely presented modules. Journal of Algebra. 37(2), 187–222 (1975).
  • [10] Brandal, W.: Commutative Rings Whose Finitely Generated Modules Decompose. Lecture Notes in Mathematics, Vol. 723, Springer-Verlag, Berlin (1979).
  • [11] Harmancı, A., Keskin, D., Smith, P. F.: On ⊕-supplemented modules. Acta Mathematica Hungarica. 83 , 161–169 (1999).
Year 2024, , 113 - 118, 24.09.2024
https://doi.org/10.36753/mathenot.1461857

Abstract

References

  • [1] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting Modules: Supplements and Projectivity in Module Theory. Frontiers in Mathematics, Birkhäuser (2006).
  • [2] Mohamed, S. H., Müller, B. J.: Continuous and Discrete Modules. London Mathematical Society Lecture Note Series, Vol. 147, Cambridge University Press (1990).
  • [3] Crivei, S., Keskin Tütüncü, D., Radu, S. M., Tribak, R.: CS-Baer and dual CS-Baer objects in abelian categories. Journal of Algebra and Its Applications. 22(10), 2350220 (2023).
  • [4] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. 2nd edition, Springer-Verlag, New York (1992).
  • [5] Crivei, S., Radu, S. M.: CS-Rickart and dual CS-Rickart objects in abelian categories. Bulletin of Belgian Mathematical Society-Simon Stevin. 29(1), 99–122 (2022).
  • [6] Tribak, R.: Dual CS-Rickart modules over Dedekind domains. Algebras and Representation Theory. 23, 229–250 (2020).
  • [7] Keskin, D., Smith, P. F., Xue,W.: Rings whose modules are ⊕-supplemented. Journal of Algebra. 218(2), 470–487 (1999).
  • [8] Büyükaşık, E., Lomp, C.: On recent generalization of semiperfect rings. Bulletin of the Australian Mathematical Society. 78(2), 317–325 (2008).
  • [9] Warfield, R. B.: Serial rings and finitely presented modules. Journal of Algebra. 37(2), 187–222 (1975).
  • [10] Brandal, W.: Commutative Rings Whose Finitely Generated Modules Decompose. Lecture Notes in Mathematics, Vol. 723, Springer-Verlag, Berlin (1979).
  • [11] Harmancı, A., Keskin, D., Smith, P. F.: On ⊕-supplemented modules. Acta Mathematica Hungarica. 83 , 161–169 (1999).
There are 11 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Nuray Eroğlu 0000-0002-0780-2247

Early Pub Date April 30, 2024
Publication Date September 24, 2024
Submission Date March 30, 2024
Acceptance Date April 30, 2024
Published in Issue Year 2024

Cite

APA Eroğlu, N. (2024). Rings Whose Certain Modules are Dual Self-CS-Baer. Mathematical Sciences and Applications E-Notes, 12(3), 113-118. https://doi.org/10.36753/mathenot.1461857
AMA Eroğlu N. Rings Whose Certain Modules are Dual Self-CS-Baer. Math. Sci. Appl. E-Notes. September 2024;12(3):113-118. doi:10.36753/mathenot.1461857
Chicago Eroğlu, Nuray. “Rings Whose Certain Modules Are Dual Self-CS-Baer”. Mathematical Sciences and Applications E-Notes 12, no. 3 (September 2024): 113-18. https://doi.org/10.36753/mathenot.1461857.
EndNote Eroğlu N (September 1, 2024) Rings Whose Certain Modules are Dual Self-CS-Baer. Mathematical Sciences and Applications E-Notes 12 3 113–118.
IEEE N. Eroğlu, “Rings Whose Certain Modules are Dual Self-CS-Baer”, Math. Sci. Appl. E-Notes, vol. 12, no. 3, pp. 113–118, 2024, doi: 10.36753/mathenot.1461857.
ISNAD Eroğlu, Nuray. “Rings Whose Certain Modules Are Dual Self-CS-Baer”. Mathematical Sciences and Applications E-Notes 12/3 (September 2024), 113-118. https://doi.org/10.36753/mathenot.1461857.
JAMA Eroğlu N. Rings Whose Certain Modules are Dual Self-CS-Baer. Math. Sci. Appl. E-Notes. 2024;12:113–118.
MLA Eroğlu, Nuray. “Rings Whose Certain Modules Are Dual Self-CS-Baer”. Mathematical Sciences and Applications E-Notes, vol. 12, no. 3, 2024, pp. 113-8, doi:10.36753/mathenot.1461857.
Vancouver Eroğlu N. Rings Whose Certain Modules are Dual Self-CS-Baer. Math. Sci. Appl. E-Notes. 2024;12(3):113-8.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.