[1] Abualrub, T., Siap, I. and Aydin, N.,Z2Z4-additive cyclic codes, IEEE Trans. Inform. Theory, Vol. 60, No. 3, pp.
1508-1514, Mar. 2014.
[2] Abualrub, T. and Siap, I., Cyclic codes over the rings Z2 + uZ2 and Z2 + uZ2 + u2Z2, Designs Codes and
Cryptography. Vol.42, No.3, 273-287(2007).
[3] Aydogdu, I. and Siap, I., The Structure of Z2Z2s−Additive Codes: Bounds on the minimum distance, Applied
Mathematics and Information Sciences,7, (6), 2271-2278, 2013.
[4] Aydogdu, I., Abualrub, T. and Siap, I., On Z2Z2[u]−additive codes, International Journal of Computer Mathematics,
vol.92, no. 9, pp. 1806-1814, 2015.
[5] Bonnecaze, A. and Udaya, P., Cyclic codes and self-dual codes over F2 + uF2, IEEE Trans. Inform. Theory. Vol.45,
No.4, 1250-1255, 1999.
[6] Borges, J., Fernández-Córdoba, C., Pujol, J., Rifà, J. and Villanueva, M., Z2Z4-linear codes: Generator Matrices
and Duality, Designs, Codes and Cryptography, 54, (2), 167-179, 2010.
[7] J. H. Conway, and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans.
Inform. Theory, Vol. 36, No. 6, pp. 1319–1333, 1990.
[8] S.T. Dougherty, P. Gaborit, M. Harada and P. Solé, Type II codes over F2 + uF2, IEEE Trans. Inform. Theory, Vol.
45, pp.32-45, 1999.
[9] Grassl, M., Code tables: Bounds on the parameters of various types of codes, Online database. Available at
http://www.codetables.de/
[10] Kaya, A. Yildiz, B., New extremal binary self-dual codes of length 68, J. Algebra Comb. Discrete Appl., Vol. 1, No.
1, 29-39, 2014.
[11] Qian, J.F., Zhang, L.N. and Zhu, S.X., (1 + u)-constacyclic and cyclic codes over F2 + uF2, Applied Math. Letters
19 (2006) 820-823.
[1] Abualrub, T., Siap, I. and Aydin, N.,Z2Z4-additive cyclic codes, IEEE Trans. Inform. Theory, Vol. 60, No. 3, pp.
1508-1514, Mar. 2014.
[2] Abualrub, T. and Siap, I., Cyclic codes over the rings Z2 + uZ2 and Z2 + uZ2 + u2Z2, Designs Codes and
Cryptography. Vol.42, No.3, 273-287(2007).
[3] Aydogdu, I. and Siap, I., The Structure of Z2Z2s−Additive Codes: Bounds on the minimum distance, Applied
Mathematics and Information Sciences,7, (6), 2271-2278, 2013.
[4] Aydogdu, I., Abualrub, T. and Siap, I., On Z2Z2[u]−additive codes, International Journal of Computer Mathematics,
vol.92, no. 9, pp. 1806-1814, 2015.
[5] Bonnecaze, A. and Udaya, P., Cyclic codes and self-dual codes over F2 + uF2, IEEE Trans. Inform. Theory. Vol.45,
No.4, 1250-1255, 1999.
[6] Borges, J., Fernández-Córdoba, C., Pujol, J., Rifà, J. and Villanueva, M., Z2Z4-linear codes: Generator Matrices
and Duality, Designs, Codes and Cryptography, 54, (2), 167-179, 2010.
[7] J. H. Conway, and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans.
Inform. Theory, Vol. 36, No. 6, pp. 1319–1333, 1990.
[8] S.T. Dougherty, P. Gaborit, M. Harada and P. Solé, Type II codes over F2 + uF2, IEEE Trans. Inform. Theory, Vol.
45, pp.32-45, 1999.
[9] Grassl, M., Code tables: Bounds on the parameters of various types of codes, Online database. Available at
http://www.codetables.de/
[10] Kaya, A. Yildiz, B., New extremal binary self-dual codes of length 68, J. Algebra Comb. Discrete Appl., Vol. 1, No.
1, 29-39, 2014.
[11] Qian, J.F., Zhang, L.N. and Zhu, S.X., (1 + u)-constacyclic and cyclic codes over F2 + uF2, Applied Math. Letters
19 (2006) 820-823.