[1] Alencar, M.S. and Francisco, M.A., The absolute minimum and maximum value problem and the Renyi entropy
of order . Telecommunications Symposium, 1(1998), 239-241.
[2] Hartley, R.V.L., Transmission of information. Bell System Tech. J., (1928), 7, 535-563.
[3] Inusah. S. and Kozubowski, T.J., A discrete analogue of the Laplace distribution. Journal of statistical planning
and inference, (2006), 136, 1090-1102.
[4] Koski, T. and Persson, L,E., Some properties of generalized exponential entropies with applications to data
compression. Information Sciences, (1992), 62, 103-132.
[5] Kozubowski, T.J. and Inusah, S., A skew Laplace distribution on integers. The Institute of Statistical Mathematics,
(2006), 58, 555-571.
[6] Renyi, A., On measures of entropy and information. Proc. Berekeley Symposium, Statist. Probability, 1961, 1,
547-561.
[7] Shannon, C.E., A Mathimatical Theory of Communication. Bell System Tech., (1948), 27, 379-423.
Add To My Library
Year 2019,
Volume: 7 Issue: 1, 113 - 119, 30.04.2019
[1] Alencar, M.S. and Francisco, M.A., The absolute minimum and maximum value problem and the Renyi entropy
of order . Telecommunications Symposium, 1(1998), 239-241.
[2] Hartley, R.V.L., Transmission of information. Bell System Tech. J., (1928), 7, 535-563.
[3] Inusah. S. and Kozubowski, T.J., A discrete analogue of the Laplace distribution. Journal of statistical planning
and inference, (2006), 136, 1090-1102.
[4] Koski, T. and Persson, L,E., Some properties of generalized exponential entropies with applications to data
compression. Information Sciences, (1992), 62, 103-132.
[5] Kozubowski, T.J. and Inusah, S., A skew Laplace distribution on integers. The Institute of Statistical Mathematics,
(2006), 58, 555-571.
[6] Renyi, A., On measures of entropy and information. Proc. Berekeley Symposium, Statist. Probability, 1961, 1,
547-561.
[7] Shannon, C.E., A Mathimatical Theory of Communication. Bell System Tech., (1948), 27, 379-423.
Tabass, M. S., & Borzadaran, G. R. M. (2019). Absolute Minimum and Maximum of the Probability Mass Functions and Limit of Generalized Renyi Entropy. Mathematical Sciences and Applications E-Notes, 7(1), 113-119.
AMA
Tabass MS, Borzadaran GRM. Absolute Minimum and Maximum of the Probability Mass Functions and Limit of Generalized Renyi Entropy. Math. Sci. Appl. E-Notes. April 2019;7(1):113-119.
Chicago
Tabass, M. Sanei, and G. R. Mohtashami Borzadaran. “Absolute Minimum and Maximum of the Probability Mass Functions and Limit of Generalized Renyi Entropy”. Mathematical Sciences and Applications E-Notes 7, no. 1 (April 2019): 113-19.
EndNote
Tabass MS, Borzadaran GRM (April 1, 2019) Absolute Minimum and Maximum of the Probability Mass Functions and Limit of Generalized Renyi Entropy. Mathematical Sciences and Applications E-Notes 7 1 113–119.
IEEE
M. S. Tabass and G. R. M. Borzadaran, “Absolute Minimum and Maximum of the Probability Mass Functions and Limit of Generalized Renyi Entropy”, Math. Sci. Appl. E-Notes, vol. 7, no. 1, pp. 113–119, 2019.
ISNAD
Tabass, M. Sanei - Borzadaran, G. R. Mohtashami. “Absolute Minimum and Maximum of the Probability Mass Functions and Limit of Generalized Renyi Entropy”. Mathematical Sciences and Applications E-Notes 7/1 (April2019), 113-119.
JAMA
Tabass MS, Borzadaran GRM. Absolute Minimum and Maximum of the Probability Mass Functions and Limit of Generalized Renyi Entropy. Math. Sci. Appl. E-Notes. 2019;7:113–119.
MLA
Tabass, M. Sanei and G. R. Mohtashami Borzadaran. “Absolute Minimum and Maximum of the Probability Mass Functions and Limit of Generalized Renyi Entropy”. Mathematical Sciences and Applications E-Notes, vol. 7, no. 1, 2019, pp. 113-9.
Vancouver
Tabass MS, Borzadaran GRM. Absolute Minimum and Maximum of the Probability Mass Functions and Limit of Generalized Renyi Entropy. Math. Sci. Appl. E-Notes. 2019;7(1):113-9.