BibTex RIS Cite

AN APPROXIMATION PROPERTY OF THE GENERALIZED JAIN'S OPERATORS OF TWO VARIABLES

Year 2013, Volume: 1 Issue: 2, 158 - 164, 01.12.2013

Abstract

The purpose of this work is to introduce a new class of doublepositive linear operators which depend on a parameter β. For these operators we proved a Korovkin type theorem and we presented some associatedconvergence properties

References

  • Agratini, O., On a sequence of linear and positive operators, Facta Universitatis (Niˇs), Ser. Mat. Inform., 14 (1999), 41-48.
  • Bernstein, S. N. , D´emonstration du th´eor`eme de Weierstrass fond´ee sur le calcul de proba- bilit´es, Comm. Kharkov math. Soc., 13 (1912), 1-2.
  • Consul, P. C., and Jain, G. C., A generalization of the Poisson distribution, Technometrics, 15 (1973), no. 4, 791-799.
  • Dirik, F., and Demirici, K., Korovkin type approximation theorem for functions of two vari- ables in statistical sense, Turk J. Math., 34 (2010), 73-83.
  • Ispir, N., Atakut, C¸ ., Approximation by modified Sz`asz-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. (Math. Sci.), 112 (2002), no. 4, 571-578.
  • Jain, G. C., Approximation of functions by a new class of linear operators, Journal of Aus- tralian Math. Society, 13 (1972), no.3, 271-276.
  • Pringsheim, A., Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann., 53 (1900), 289-321. [11] Robinson, G. M., Divergent double sequences and series, Amer. Math. Soc. Transl., 28 (1926), 50-73.
  • Stancu, D. D., A new class of uniform approximating polynomial operators in two and several variables, Proceedings of the Conference on the Constructive Theory of Functions (Approxi- mation Theory) (Budapest, 1969) pp. (Budapest: Akad´emiai Kiad´o) (1972), 443455.
  • Sz´asz, O., Generalization of S. Bernsteins polynomials to the infinite interval, J. of Research of the Nat. Bur. of Standards, 45 (1950), 239-245.
  • Walczak, Z., Approximation of functions of two variables by some linear positive operators, Acta. Math. Univ. Comenianae, LXXIV (2005), no. 1, 3748.
  • Faculty of Mathematics and Computer Science Babe¸s-Bolyai University Kog˘alniceanu street No. 1, 400084, Cluj-Napoca, Romania
  • E-mail address: anca.farcas@ubbcluj.ro
Year 2013, Volume: 1 Issue: 2, 158 - 164, 01.12.2013

Abstract

References

  • Agratini, O., On a sequence of linear and positive operators, Facta Universitatis (Niˇs), Ser. Mat. Inform., 14 (1999), 41-48.
  • Bernstein, S. N. , D´emonstration du th´eor`eme de Weierstrass fond´ee sur le calcul de proba- bilit´es, Comm. Kharkov math. Soc., 13 (1912), 1-2.
  • Consul, P. C., and Jain, G. C., A generalization of the Poisson distribution, Technometrics, 15 (1973), no. 4, 791-799.
  • Dirik, F., and Demirici, K., Korovkin type approximation theorem for functions of two vari- ables in statistical sense, Turk J. Math., 34 (2010), 73-83.
  • Ispir, N., Atakut, C¸ ., Approximation by modified Sz`asz-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. (Math. Sci.), 112 (2002), no. 4, 571-578.
  • Jain, G. C., Approximation of functions by a new class of linear operators, Journal of Aus- tralian Math. Society, 13 (1972), no.3, 271-276.
  • Pringsheim, A., Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann., 53 (1900), 289-321. [11] Robinson, G. M., Divergent double sequences and series, Amer. Math. Soc. Transl., 28 (1926), 50-73.
  • Stancu, D. D., A new class of uniform approximating polynomial operators in two and several variables, Proceedings of the Conference on the Constructive Theory of Functions (Approxi- mation Theory) (Budapest, 1969) pp. (Budapest: Akad´emiai Kiad´o) (1972), 443455.
  • Sz´asz, O., Generalization of S. Bernsteins polynomials to the infinite interval, J. of Research of the Nat. Bur. of Standards, 45 (1950), 239-245.
  • Walczak, Z., Approximation of functions of two variables by some linear positive operators, Acta. Math. Univ. Comenianae, LXXIV (2005), no. 1, 3748.
  • Faculty of Mathematics and Computer Science Babe¸s-Bolyai University Kog˘alniceanu street No. 1, 400084, Cluj-Napoca, Romania
  • E-mail address: anca.farcas@ubbcluj.ro
There are 12 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Anca Farcas This is me

Publication Date December 1, 2013
Submission Date March 9, 2015
Published in Issue Year 2013 Volume: 1 Issue: 2

Cite

APA Farcas, A. (2013). AN APPROXIMATION PROPERTY OF THE GENERALIZED JAIN’S OPERATORS OF TWO VARIABLES. Mathematical Sciences and Applications E-Notes, 1(2), 158-164.
AMA Farcas A. AN APPROXIMATION PROPERTY OF THE GENERALIZED JAIN’S OPERATORS OF TWO VARIABLES. Math. Sci. Appl. E-Notes. December 2013;1(2):158-164.
Chicago Farcas, Anca. “AN APPROXIMATION PROPERTY OF THE GENERALIZED JAIN’S OPERATORS OF TWO VARIABLES”. Mathematical Sciences and Applications E-Notes 1, no. 2 (December 2013): 158-64.
EndNote Farcas A (December 1, 2013) AN APPROXIMATION PROPERTY OF THE GENERALIZED JAIN’S OPERATORS OF TWO VARIABLES. Mathematical Sciences and Applications E-Notes 1 2 158–164.
IEEE A. Farcas, “AN APPROXIMATION PROPERTY OF THE GENERALIZED JAIN’S OPERATORS OF TWO VARIABLES”, Math. Sci. Appl. E-Notes, vol. 1, no. 2, pp. 158–164, 2013.
ISNAD Farcas, Anca. “AN APPROXIMATION PROPERTY OF THE GENERALIZED JAIN’S OPERATORS OF TWO VARIABLES”. Mathematical Sciences and Applications E-Notes 1/2 (December 2013), 158-164.
JAMA Farcas A. AN APPROXIMATION PROPERTY OF THE GENERALIZED JAIN’S OPERATORS OF TWO VARIABLES. Math. Sci. Appl. E-Notes. 2013;1:158–164.
MLA Farcas, Anca. “AN APPROXIMATION PROPERTY OF THE GENERALIZED JAIN’S OPERATORS OF TWO VARIABLES”. Mathematical Sciences and Applications E-Notes, vol. 1, no. 2, 2013, pp. 158-64.
Vancouver Farcas A. AN APPROXIMATION PROPERTY OF THE GENERALIZED JAIN’S OPERATORS OF TWO VARIABLES. Math. Sci. Appl. E-Notes. 2013;1(2):158-64.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.