Research Article
BibTex RIS Cite
Year 2015, Volume: 3 Issue: 1, 65 - 74, 15.05.2015
https://doi.org/10.36753/mathenot.421216

Abstract

References

  • [1] Arslan, K., West, A., Product submanifolds with pointwise 3-planar normal sections, Glasg. Math. J., 37 (1995), no. 1, 73-81.
  • [2] Arslan, K., Ozgür, C., ¨ On normal sections of Veronese submanifold, Balkan J. Geom. Appl., 4 (1999), no. 1, 1-8.
  • [3] Arslan, K., Özgür, C., Curves and surfaces of AW(k)−type, Geometry and topology of submanifolds, IX (Valenciennes/Lyon/Leuven, 1997), 21-26, world Sci. Publishing, River Edge, NJ, 1999.
  • [4] Arslan, K., Ozgür, C., On normal sections of Stiefel submanifold, Balkan J. Geom. Appl., 6 (2001), no. 1, 7-14.
  • [5] Arslan, K., Çelik, Y., Deszcz, R., Ozgür, C., ¨ Submanifolds all of whose normal sections are W−curves, Far East J. Math. Sci., 5 (1997), no. 4, 537-544.
  • [6] Özgür, C., Gezgin, F., On some curves of AW(k)−type, Diff. Geom. Dyn. Syst., 7 (2005), 74-80.
  • [7] Külahçı, M., Bektaş, M., Ergüt, M., Curves of AW(k)−type in 3-dimensional null cone, Phys. Lett. A., 371 (2007), 275-277.
  • [8] K¨ulahçı, M., Bektaş, M., Ergüt, M., On harmonic curvatures of null curves of the AW(k)−type in Lorentzian space, Z. Naturforsch, 63a (2008), 248-252.
  • [9] Ersoy, S., Masal, M., Tosun, M., On Mannheim Partner Curves of AW(k)−type, Uzbek. Mat. Zh., 1 (2014), 197-107.
  • [10] Lui, H., Wang, F., Mannheim Partner Curves in 3−Space, Journal of Geometry, 88 (2008), no. 1-2, 120-126.
  • [11] Kahraman, T., Onder, M., Kazaz, M., U˘gurlu, H. H., ¨ Some Characterization of Mannheim Partner Curves in the Minkowski 3−Space E31, Proceedings of the Estonian Academy of Sciences, 60 (2011), no. 4, 210-220.
  • [12] Petrovi´c-Torgasev, M., Sucurovic, E., Some characterizations of the spacelike, the timelike and the null curves on the pseudohyperbolic space H20in E31, Kragujevac J. Math., 22(2000), 71-82.
  • [13] Birman, G. S., Nomizu, K., Trigonometry in Lorentzian geometry, Amer. Math. Month., 91 (1984), no. 9, 543-549.
  • [14] O’Neill, B. Semi-Riemannian Geometry with applications to relativity, Acedemic Press, London, 1983.

MANNHEIM PARTNER CURVES OF AW(k)−TYPE IN MINKOWSKI 3−SPACE

Year 2015, Volume: 3 Issue: 1, 65 - 74, 15.05.2015
https://doi.org/10.36753/mathenot.421216

Abstract


References

  • [1] Arslan, K., West, A., Product submanifolds with pointwise 3-planar normal sections, Glasg. Math. J., 37 (1995), no. 1, 73-81.
  • [2] Arslan, K., Ozgür, C., ¨ On normal sections of Veronese submanifold, Balkan J. Geom. Appl., 4 (1999), no. 1, 1-8.
  • [3] Arslan, K., Özgür, C., Curves and surfaces of AW(k)−type, Geometry and topology of submanifolds, IX (Valenciennes/Lyon/Leuven, 1997), 21-26, world Sci. Publishing, River Edge, NJ, 1999.
  • [4] Arslan, K., Ozgür, C., On normal sections of Stiefel submanifold, Balkan J. Geom. Appl., 6 (2001), no. 1, 7-14.
  • [5] Arslan, K., Çelik, Y., Deszcz, R., Ozgür, C., ¨ Submanifolds all of whose normal sections are W−curves, Far East J. Math. Sci., 5 (1997), no. 4, 537-544.
  • [6] Özgür, C., Gezgin, F., On some curves of AW(k)−type, Diff. Geom. Dyn. Syst., 7 (2005), 74-80.
  • [7] Külahçı, M., Bektaş, M., Ergüt, M., Curves of AW(k)−type in 3-dimensional null cone, Phys. Lett. A., 371 (2007), 275-277.
  • [8] K¨ulahçı, M., Bektaş, M., Ergüt, M., On harmonic curvatures of null curves of the AW(k)−type in Lorentzian space, Z. Naturforsch, 63a (2008), 248-252.
  • [9] Ersoy, S., Masal, M., Tosun, M., On Mannheim Partner Curves of AW(k)−type, Uzbek. Mat. Zh., 1 (2014), 197-107.
  • [10] Lui, H., Wang, F., Mannheim Partner Curves in 3−Space, Journal of Geometry, 88 (2008), no. 1-2, 120-126.
  • [11] Kahraman, T., Onder, M., Kazaz, M., U˘gurlu, H. H., ¨ Some Characterization of Mannheim Partner Curves in the Minkowski 3−Space E31, Proceedings of the Estonian Academy of Sciences, 60 (2011), no. 4, 210-220.
  • [12] Petrovi´c-Torgasev, M., Sucurovic, E., Some characterizations of the spacelike, the timelike and the null curves on the pseudohyperbolic space H20in E31, Kragujevac J. Math., 22(2000), 71-82.
  • [13] Birman, G. S., Nomizu, K., Trigonometry in Lorentzian geometry, Amer. Math. Month., 91 (1984), no. 9, 543-549.
  • [14] O’Neill, B. Semi-Riemannian Geometry with applications to relativity, Acedemic Press, London, 1983.
There are 14 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ayşe Çiçek Gözütok

Publication Date May 15, 2015
Submission Date January 16, 2015
Published in Issue Year 2015 Volume: 3 Issue: 1

Cite

APA Çiçek Gözütok, A. (2015). MANNHEIM PARTNER CURVES OF AW(k)−TYPE IN MINKOWSKI 3−SPACE. Mathematical Sciences and Applications E-Notes, 3(1), 65-74. https://doi.org/10.36753/mathenot.421216
AMA Çiçek Gözütok A. MANNHEIM PARTNER CURVES OF AW(k)−TYPE IN MINKOWSKI 3−SPACE. Math. Sci. Appl. E-Notes. May 2015;3(1):65-74. doi:10.36753/mathenot.421216
Chicago Çiçek Gözütok, Ayşe. “MANNHEIM PARTNER CURVES OF AW(k)−TYPE IN MINKOWSKI 3−SPACE”. Mathematical Sciences and Applications E-Notes 3, no. 1 (May 2015): 65-74. https://doi.org/10.36753/mathenot.421216.
EndNote Çiçek Gözütok A (May 1, 2015) MANNHEIM PARTNER CURVES OF AW(k)−TYPE IN MINKOWSKI 3−SPACE. Mathematical Sciences and Applications E-Notes 3 1 65–74.
IEEE A. Çiçek Gözütok, “MANNHEIM PARTNER CURVES OF AW(k)−TYPE IN MINKOWSKI 3−SPACE”, Math. Sci. Appl. E-Notes, vol. 3, no. 1, pp. 65–74, 2015, doi: 10.36753/mathenot.421216.
ISNAD Çiçek Gözütok, Ayşe. “MANNHEIM PARTNER CURVES OF AW(k)−TYPE IN MINKOWSKI 3−SPACE”. Mathematical Sciences and Applications E-Notes 3/1 (May 2015), 65-74. https://doi.org/10.36753/mathenot.421216.
JAMA Çiçek Gözütok A. MANNHEIM PARTNER CURVES OF AW(k)−TYPE IN MINKOWSKI 3−SPACE. Math. Sci. Appl. E-Notes. 2015;3:65–74.
MLA Çiçek Gözütok, Ayşe. “MANNHEIM PARTNER CURVES OF AW(k)−TYPE IN MINKOWSKI 3−SPACE”. Mathematical Sciences and Applications E-Notes, vol. 3, no. 1, 2015, pp. 65-74, doi:10.36753/mathenot.421216.
Vancouver Çiçek Gözütok A. MANNHEIM PARTNER CURVES OF AW(k)−TYPE IN MINKOWSKI 3−SPACE. Math. Sci. Appl. E-Notes. 2015;3(1):65-74.

Cited By

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.