Research Article
BibTex RIS Cite
Year 2016, Volume: 4 Issue: 1, 24 - 30, 15.04.2016
https://doi.org/10.36753/mathenot.421354

Abstract

References

  • [1] Bergman, G. M., The Diamond lemma for ring theory, Adv. in Math. 29 (1978), 178-218.
  • [2] Bokut, L. A., Unsolvability of the word problem and subalgebras of finitely presented Lie algebras, Izv. Akad. Nauk. SSSR Ser. Math. 36 (1972), 1173-1219.
  • [3] Bokut, L. A., Embeddings into simple associative algebras, Algebrai Logika 15 (1976), 117-142.
  • [4] Bokut, L. A., Algorithmic and Combinatorial Algebra, Kluwer, Dordrecht, (1994).
  • [5] Bokut, L. A., Kolesnikov, P., Gröbner-Shirshov bases: from incipient to nowadays, Proceedings of the POMI 272 (1994), 26-67.
  • [6] Bokut, L. A., Kolesnikov, P., Gröbner-Shirshov bases: from their incipiency to the present, J. Math. Sci. 116, 1 (2003), 2894-2916.
  • [7] Bokut, L. A., Chen, Y., Gröbner-Shirshov bases: some new results, Proc. Second Int. Congress in Algebra and Combinatorics,World Scientific, (2008), 35-56.
  • [8] Buchberger, B., An algorithm for finding a basis for the residue class Ring of a zero-dimensional polynomial ideal, Phd. thesis, Univ. of Innsbruck, Austria, (1965).
  • [9] Buchberger, B., An algorithmical criteria for the solvability of algebraic system of equations, Aequationes Math., 4 (1970), 374- 383.
  • [10] Drensky, V., Defining relations of noncommutative algebras, Institue of Mathematics and Informatics Bulgarian Academy of Sciences.
  • [11] Shirshov, A.I., Some algorithmic problems for Lie algebras, Sibirsk. Mat. Z. 3 (1962) 292-296; English translation in SIGSAM Bull, 33(2) (1999), 3-6.
  • [12] Smel’kin, A. L., Free polynilpotent groups I. Soviet Math. Dokl. 4 (1963), 950-953. II. Izvest. Akad. Nauk S.S.S.R. Ser. Mat. 28(1964), 91-122. III. Dokl. Akad. Nauk. S.S.S.R. 169 (1966), 1024-1025.

A Presentation of The Frege Lie Algebra F/γ3 (F)'

Year 2016, Volume: 4 Issue: 1, 24 - 30, 15.04.2016
https://doi.org/10.36753/mathenot.421354

Abstract


References

  • [1] Bergman, G. M., The Diamond lemma for ring theory, Adv. in Math. 29 (1978), 178-218.
  • [2] Bokut, L. A., Unsolvability of the word problem and subalgebras of finitely presented Lie algebras, Izv. Akad. Nauk. SSSR Ser. Math. 36 (1972), 1173-1219.
  • [3] Bokut, L. A., Embeddings into simple associative algebras, Algebrai Logika 15 (1976), 117-142.
  • [4] Bokut, L. A., Algorithmic and Combinatorial Algebra, Kluwer, Dordrecht, (1994).
  • [5] Bokut, L. A., Kolesnikov, P., Gröbner-Shirshov bases: from incipient to nowadays, Proceedings of the POMI 272 (1994), 26-67.
  • [6] Bokut, L. A., Kolesnikov, P., Gröbner-Shirshov bases: from their incipiency to the present, J. Math. Sci. 116, 1 (2003), 2894-2916.
  • [7] Bokut, L. A., Chen, Y., Gröbner-Shirshov bases: some new results, Proc. Second Int. Congress in Algebra and Combinatorics,World Scientific, (2008), 35-56.
  • [8] Buchberger, B., An algorithm for finding a basis for the residue class Ring of a zero-dimensional polynomial ideal, Phd. thesis, Univ. of Innsbruck, Austria, (1965).
  • [9] Buchberger, B., An algorithmical criteria for the solvability of algebraic system of equations, Aequationes Math., 4 (1970), 374- 383.
  • [10] Drensky, V., Defining relations of noncommutative algebras, Institue of Mathematics and Informatics Bulgarian Academy of Sciences.
  • [11] Shirshov, A.I., Some algorithmic problems for Lie algebras, Sibirsk. Mat. Z. 3 (1962) 292-296; English translation in SIGSAM Bull, 33(2) (1999), 3-6.
  • [12] Smel’kin, A. L., Free polynilpotent groups I. Soviet Math. Dokl. 4 (1963), 950-953. II. Izvest. Akad. Nauk S.S.S.R. Ser. Mat. 28(1964), 91-122. III. Dokl. Akad. Nauk. S.S.S.R. 169 (1966), 1024-1025.
There are 12 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Gülistan Kaya Gök This is me

Publication Date April 15, 2016
Submission Date August 18, 2015
Published in Issue Year 2016 Volume: 4 Issue: 1

Cite

APA Gök, G. K. (2016). A Presentation of The Frege Lie Algebra F/γ3 (F)’. Mathematical Sciences and Applications E-Notes, 4(1), 24-30. https://doi.org/10.36753/mathenot.421354
AMA Gök GK. A Presentation of The Frege Lie Algebra F/γ3 (F)’. Math. Sci. Appl. E-Notes. April 2016;4(1):24-30. doi:10.36753/mathenot.421354
Chicago Gök, Gülistan Kaya. “A Presentation of The Frege Lie Algebra F/γ3 (F)’”. Mathematical Sciences and Applications E-Notes 4, no. 1 (April 2016): 24-30. https://doi.org/10.36753/mathenot.421354.
EndNote Gök GK (April 1, 2016) A Presentation of The Frege Lie Algebra F/γ3 (F)’. Mathematical Sciences and Applications E-Notes 4 1 24–30.
IEEE G. K. Gök, “A Presentation of The Frege Lie Algebra F/γ3 (F)’”, Math. Sci. Appl. E-Notes, vol. 4, no. 1, pp. 24–30, 2016, doi: 10.36753/mathenot.421354.
ISNAD Gök, Gülistan Kaya. “A Presentation of The Frege Lie Algebra F/γ3 (F)’”. Mathematical Sciences and Applications E-Notes 4/1 (April 2016), 24-30. https://doi.org/10.36753/mathenot.421354.
JAMA Gök GK. A Presentation of The Frege Lie Algebra F/γ3 (F)’. Math. Sci. Appl. E-Notes. 2016;4:24–30.
MLA Gök, Gülistan Kaya. “A Presentation of The Frege Lie Algebra F/γ3 (F)’”. Mathematical Sciences and Applications E-Notes, vol. 4, no. 1, 2016, pp. 24-30, doi:10.36753/mathenot.421354.
Vancouver Gök GK. A Presentation of The Frege Lie Algebra F/γ3 (F)’. Math. Sci. Appl. E-Notes. 2016;4(1):24-30.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.