Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, Cilt: 5 Sayı: 1, 40 - 45, 30.04.2017

Öz

Kaynakça

  • [1] Adámek, J., Herrlich, H., Strecker, G. E., Abstract and Concrete Categories, Wiley, New York, (1990).
  • [2] Adámek, J., Reiterman, J., Cartesian Closed Hull for Metric Spaces. Comment. Math. Univ. Carolinae. 31 (1990), 1-6.
  • [3] Baran, M., Separation Properties, Indian J. Pure Appl. Math. 23 (5) (1991), 333-341.
  • [4] Baran, M., Separation Properties in Topological Categories, Math. Balkanica. 10 (1996), 39-48.
  • [5] Baran, M., Completely Regular Objects and Normal Objects in Topological Categories, Acta Math. Hungar. 80 (1998), 211-224.
  • [6] Baran, M., T3 and T4 -Objects in Topological Categories, Indian J.Pure Appl. Math. 29 (1998), 59-69.
  • [7] Fre´chet, M.,Sur quelques points du calcul fonctionnel, Rend. Palermo. 22 (1906), 1-74.
  • [8] Herrlich, H., Topological Functors, Gen. Topology Appl. 4 (1974), 125-142.
  • [9] Johnstone, P. T., Topos Theory, L.M.S Mathematics Monograph: No. 10. Academic, New York, (1977).
  • [10] Lowen, R., Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad, Oxford Mathematical Monographs, Oxford University Press., (1997).
  • [11] Lowen, R., Approach Spaces: a Common Supercategory of TOP and MET, Math. Nachr. 141 (1989), 183-226.
  • [12] MacLane, S., Moerdijk, I., Sheaves in Geometry and Logic. Springer, New York, (1992).
  • [13] Nauwelaerts, M., Cartesian Closed Hull for (Quasi-) Metric Spaces, Comment. Math. Univ. Carolinae. 41 (2000), 559-573.
  • [14] Preuss, G., Theory of Topological Structures, An Approach to topological Categories, D. Reidel Publ. Co., Dordrecht, (1988).
  • [15] Wilson, W. A., On Quasi-Metric Spaces, Amer.J. Math. 53 (1931), 675-684.

T_1 Extended Pseudo-Quasi-Semi Metric Spaces

Yıl 2017, Cilt: 5 Sayı: 1, 40 - 45, 30.04.2017

Öz

In this paper, we characterize a T1 extended pseudo-quasi-semi metric space at p and a T1 extended
pseudo-quasi-semi metric space and investigate the relationships between them. Finally, we compare
each of T1 extended pseudo-quasi-semi metric spaces with the usual T1.

Kaynakça

  • [1] Adámek, J., Herrlich, H., Strecker, G. E., Abstract and Concrete Categories, Wiley, New York, (1990).
  • [2] Adámek, J., Reiterman, J., Cartesian Closed Hull for Metric Spaces. Comment. Math. Univ. Carolinae. 31 (1990), 1-6.
  • [3] Baran, M., Separation Properties, Indian J. Pure Appl. Math. 23 (5) (1991), 333-341.
  • [4] Baran, M., Separation Properties in Topological Categories, Math. Balkanica. 10 (1996), 39-48.
  • [5] Baran, M., Completely Regular Objects and Normal Objects in Topological Categories, Acta Math. Hungar. 80 (1998), 211-224.
  • [6] Baran, M., T3 and T4 -Objects in Topological Categories, Indian J.Pure Appl. Math. 29 (1998), 59-69.
  • [7] Fre´chet, M.,Sur quelques points du calcul fonctionnel, Rend. Palermo. 22 (1906), 1-74.
  • [8] Herrlich, H., Topological Functors, Gen. Topology Appl. 4 (1974), 125-142.
  • [9] Johnstone, P. T., Topos Theory, L.M.S Mathematics Monograph: No. 10. Academic, New York, (1977).
  • [10] Lowen, R., Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad, Oxford Mathematical Monographs, Oxford University Press., (1997).
  • [11] Lowen, R., Approach Spaces: a Common Supercategory of TOP and MET, Math. Nachr. 141 (1989), 183-226.
  • [12] MacLane, S., Moerdijk, I., Sheaves in Geometry and Logic. Springer, New York, (1992).
  • [13] Nauwelaerts, M., Cartesian Closed Hull for (Quasi-) Metric Spaces, Comment. Math. Univ. Carolinae. 41 (2000), 559-573.
  • [14] Preuss, G., Theory of Topological Structures, An Approach to topological Categories, D. Reidel Publ. Co., Dordrecht, (1988).
  • [15] Wilson, W. A., On Quasi-Metric Spaces, Amer.J. Math. 53 (1931), 675-684.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Tesnim Meryem Baran Bu kişi benim

Muammer Kula

Yayımlanma Tarihi 30 Nisan 2017
Gönderilme Tarihi 20 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 1

Kaynak Göster

APA Baran, T. M., & Kula, M. (2017). T_1 Extended Pseudo-Quasi-Semi Metric Spaces. Mathematical Sciences and Applications E-Notes, 5(1), 40-45.
AMA Baran TM, Kula M. T_1 Extended Pseudo-Quasi-Semi Metric Spaces. Math. Sci. Appl. E-Notes. Nisan 2017;5(1):40-45.
Chicago Baran, Tesnim Meryem, ve Muammer Kula. “T_1 Extended Pseudo-Quasi-Semi Metric Spaces”. Mathematical Sciences and Applications E-Notes 5, sy. 1 (Nisan 2017): 40-45.
EndNote Baran TM, Kula M (01 Nisan 2017) T_1 Extended Pseudo-Quasi-Semi Metric Spaces. Mathematical Sciences and Applications E-Notes 5 1 40–45.
IEEE T. M. Baran ve M. Kula, “T_1 Extended Pseudo-Quasi-Semi Metric Spaces”, Math. Sci. Appl. E-Notes, c. 5, sy. 1, ss. 40–45, 2017.
ISNAD Baran, Tesnim Meryem - Kula, Muammer. “T_1 Extended Pseudo-Quasi-Semi Metric Spaces”. Mathematical Sciences and Applications E-Notes 5/1 (Nisan 2017), 40-45.
JAMA Baran TM, Kula M. T_1 Extended Pseudo-Quasi-Semi Metric Spaces. Math. Sci. Appl. E-Notes. 2017;5:40–45.
MLA Baran, Tesnim Meryem ve Muammer Kula. “T_1 Extended Pseudo-Quasi-Semi Metric Spaces”. Mathematical Sciences and Applications E-Notes, c. 5, sy. 1, 2017, ss. 40-45.
Vancouver Baran TM, Kula M. T_1 Extended Pseudo-Quasi-Semi Metric Spaces. Math. Sci. Appl. E-Notes. 2017;5(1):40-5.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.