Research Article
BibTex RIS Cite
Year 2023, Volume: 11 Issue: 4, 178 - 191, 25.10.2023
https://doi.org/10.36753/mathenot.948462

Abstract

References

  • [1] Somsuwan, J., Nakprasit, K. M.: Some bounds for the polar derivative of a polynomial. International Journal of Mathematics and Mathematical Sciences. 2018, 5034607 (2018).
  • [2] Chanam, B., Dewan, K. K.: Inequalities for a polynomial and its derivatives. Journal of Interdisciplinary Mathematics. 11(4), 469-478 (2008).
  • [3] Bernstein, S.: Lecons sur les propriétés extrémales et la meilleure approximation desfonctions analytiques d’une variable réelle. Gauthier Villars. Paris (1926).
  • [4] Lax, P. D.: Proof of a conjecture of P. Erdös on the derivative of a polynomial. Bull. Amer. Math. Soc. 50, 509-513 (1944).
  • [5] Turán, P.: Über die Ableitung von Polynomen. Compositio Mathematica. 7, 89-95 (1939).
  • [6] Malik, M. A.: On the derivative of a polynomial. Journal of the London Mathematical Society. 2(1), 57-60 (1969).
  • [7] Aziz, A., Zargar, B. A.: Inequalities for a polynomial and its derivative. Mathematical Inequalities and Applications. 1(4), 543-550 (1998).
  • [8] Aziz, A., Rather, N. A.: A refinement of a theorem of Paul Turán concerning polynomials. Mathematical Inequalities and Applications. 1(2), 231-238 (1998).
  • [9] Dewan, K. K., Upadhye, C. M.: Inequalities for the polar derivative of a polynomial. Journal of Inequalities in Pure and Applied Mathematics. 9(4), 1-9 (2008).
  • [10] Gardner, R. B., Govil, N. K., Musukala, S. R.: Rate of growth of polynomials not vanishing inside a circle. Journal of Inequalities in Pure and Applied Mathematics. 6(2), 1-9 (2005).
  • [11] Pólya, G., Szegö, G.: Aufgaben and Lehratze ous der Analysis I (Problems and Theorems in Analysis I). Springer-Verlag. Berlin (1925).
  • [12] Chanam, B., Dewan, K. K.: Inequalities for a polynomial and its derivatives. J. Math. Anal. Appl. 336, 171-179 (2007).
  • [13] Qazi, M. A.: On the maximum modulus of polynomials. Proc. Amer. Math. Soc. 115, 337-343 (1992).

Generalized Turan-type Inequalities for Polar Derivative of a Polynomial

Year 2023, Volume: 11 Issue: 4, 178 - 191, 25.10.2023
https://doi.org/10.36753/mathenot.948462

Abstract

Let $P(z)=a_0+\sum\limits_{\nu=\mu}^na_{\nu}z^{\nu}$, $1\leq\mu\leq n$, be a polynomial of degree $n$ having all its zeros in $|z|\leq k$, $k\geq 1$. We obtain an improvement and a generalization of an inequality in polar derivative proved by Somsuwan and Nakprasit [1]. Further, we also extend a result proved by Chanam and Dewan [2] to its polar version. Besides, our results are also found to generalize and improve some known inequalities.

References

  • [1] Somsuwan, J., Nakprasit, K. M.: Some bounds for the polar derivative of a polynomial. International Journal of Mathematics and Mathematical Sciences. 2018, 5034607 (2018).
  • [2] Chanam, B., Dewan, K. K.: Inequalities for a polynomial and its derivatives. Journal of Interdisciplinary Mathematics. 11(4), 469-478 (2008).
  • [3] Bernstein, S.: Lecons sur les propriétés extrémales et la meilleure approximation desfonctions analytiques d’une variable réelle. Gauthier Villars. Paris (1926).
  • [4] Lax, P. D.: Proof of a conjecture of P. Erdös on the derivative of a polynomial. Bull. Amer. Math. Soc. 50, 509-513 (1944).
  • [5] Turán, P.: Über die Ableitung von Polynomen. Compositio Mathematica. 7, 89-95 (1939).
  • [6] Malik, M. A.: On the derivative of a polynomial. Journal of the London Mathematical Society. 2(1), 57-60 (1969).
  • [7] Aziz, A., Zargar, B. A.: Inequalities for a polynomial and its derivative. Mathematical Inequalities and Applications. 1(4), 543-550 (1998).
  • [8] Aziz, A., Rather, N. A.: A refinement of a theorem of Paul Turán concerning polynomials. Mathematical Inequalities and Applications. 1(2), 231-238 (1998).
  • [9] Dewan, K. K., Upadhye, C. M.: Inequalities for the polar derivative of a polynomial. Journal of Inequalities in Pure and Applied Mathematics. 9(4), 1-9 (2008).
  • [10] Gardner, R. B., Govil, N. K., Musukala, S. R.: Rate of growth of polynomials not vanishing inside a circle. Journal of Inequalities in Pure and Applied Mathematics. 6(2), 1-9 (2005).
  • [11] Pólya, G., Szegö, G.: Aufgaben and Lehratze ous der Analysis I (Problems and Theorems in Analysis I). Springer-Verlag. Berlin (1925).
  • [12] Chanam, B., Dewan, K. K.: Inequalities for a polynomial and its derivatives. J. Math. Anal. Appl. 336, 171-179 (2007).
  • [13] Qazi, M. A.: On the maximum modulus of polynomials. Proc. Amer. Math. Soc. 115, 337-343 (1992).
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Kshetrimayum Krishnadas 0000-0001-5091-2874

Thangjam Singh This is me 0000-0002-9061-2400

Barchand Chanam This is me 0000-0001-6397-9066

Early Pub Date August 8, 2023
Publication Date October 25, 2023
Submission Date June 8, 2021
Acceptance Date April 11, 2022
Published in Issue Year 2023 Volume: 11 Issue: 4

Cite

APA Krishnadas, K., Singh, T., & Chanam, B. (2023). Generalized Turan-type Inequalities for Polar Derivative of a Polynomial. Mathematical Sciences and Applications E-Notes, 11(4), 178-191. https://doi.org/10.36753/mathenot.948462
AMA Krishnadas K, Singh T, Chanam B. Generalized Turan-type Inequalities for Polar Derivative of a Polynomial. Math. Sci. Appl. E-Notes. October 2023;11(4):178-191. doi:10.36753/mathenot.948462
Chicago Krishnadas, Kshetrimayum, Thangjam Singh, and Barchand Chanam. “Generalized Turan-Type Inequalities for Polar Derivative of a Polynomial”. Mathematical Sciences and Applications E-Notes 11, no. 4 (October 2023): 178-91. https://doi.org/10.36753/mathenot.948462.
EndNote Krishnadas K, Singh T, Chanam B (October 1, 2023) Generalized Turan-type Inequalities for Polar Derivative of a Polynomial. Mathematical Sciences and Applications E-Notes 11 4 178–191.
IEEE K. Krishnadas, T. Singh, and B. Chanam, “Generalized Turan-type Inequalities for Polar Derivative of a Polynomial”, Math. Sci. Appl. E-Notes, vol. 11, no. 4, pp. 178–191, 2023, doi: 10.36753/mathenot.948462.
ISNAD Krishnadas, Kshetrimayum et al. “Generalized Turan-Type Inequalities for Polar Derivative of a Polynomial”. Mathematical Sciences and Applications E-Notes 11/4 (October 2023), 178-191. https://doi.org/10.36753/mathenot.948462.
JAMA Krishnadas K, Singh T, Chanam B. Generalized Turan-type Inequalities for Polar Derivative of a Polynomial. Math. Sci. Appl. E-Notes. 2023;11:178–191.
MLA Krishnadas, Kshetrimayum et al. “Generalized Turan-Type Inequalities for Polar Derivative of a Polynomial”. Mathematical Sciences and Applications E-Notes, vol. 11, no. 4, 2023, pp. 178-91, doi:10.36753/mathenot.948462.
Vancouver Krishnadas K, Singh T, Chanam B. Generalized Turan-type Inequalities for Polar Derivative of a Polynomial. Math. Sci. Appl. E-Notes. 2023;11(4):178-91.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.