Research Article
BibTex RIS Cite

Rings Whose Certain Modules are Dual Self-CS-Baer

Year 2024, Volume: 12 Issue: 3, 113 - 118, 24.09.2024
https://doi.org/10.36753/mathenot.1461857

Abstract

In this work, we characterize some rings in terms of dual self-CS-Baer modules (briefly, ds-CS-Baer modules). We prove that any ring $R$ is a left and right artinian serial ring with $J^2(R)=0$ iff $R\oplus M$ is ds-CS-Baer for every right $R$-module $M$. If $R$ is a commutative ring, then we prove that $R$ is an artinian serial ring iff $R$ is perfect and every $R$-module is a direct sum of ds-CS-Baer $R$-modules. Also, we show that $R$ is a right perfect ring iff all countably generated free right $R$-modules are ds-CS-Baer.

References

  • [1] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting Modules: Supplements and Projectivity in Module Theory. Frontiers in Mathematics, Birkhäuser (2006).
  • [2] Mohamed, S. H., Müller, B. J.: Continuous and Discrete Modules. London Mathematical Society Lecture Note Series, Vol. 147, Cambridge University Press (1990).
  • [3] Crivei, S., Keskin Tütüncü, D., Radu, S. M., Tribak, R.: CS-Baer and dual CS-Baer objects in abelian categories. Journal of Algebra and Its Applications. 22(10), 2350220 (2023).
  • [4] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. 2nd edition, Springer-Verlag, New York (1992).
  • [5] Crivei, S., Radu, S. M.: CS-Rickart and dual CS-Rickart objects in abelian categories. Bulletin of Belgian Mathematical Society-Simon Stevin. 29(1), 99–122 (2022).
  • [6] Tribak, R.: Dual CS-Rickart modules over Dedekind domains. Algebras and Representation Theory. 23, 229–250 (2020).
  • [7] Keskin, D., Smith, P. F., Xue,W.: Rings whose modules are ⊕-supplemented. Journal of Algebra. 218(2), 470–487 (1999).
  • [8] Büyükaşık, E., Lomp, C.: On recent generalization of semiperfect rings. Bulletin of the Australian Mathematical Society. 78(2), 317–325 (2008).
  • [9] Warfield, R. B.: Serial rings and finitely presented modules. Journal of Algebra. 37(2), 187–222 (1975).
  • [10] Brandal, W.: Commutative Rings Whose Finitely Generated Modules Decompose. Lecture Notes in Mathematics, Vol. 723, Springer-Verlag, Berlin (1979).
  • [11] Harmancı, A., Keskin, D., Smith, P. F.: On ⊕-supplemented modules. Acta Mathematica Hungarica. 83 , 161–169 (1999).
Year 2024, Volume: 12 Issue: 3, 113 - 118, 24.09.2024
https://doi.org/10.36753/mathenot.1461857

Abstract

References

  • [1] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting Modules: Supplements and Projectivity in Module Theory. Frontiers in Mathematics, Birkhäuser (2006).
  • [2] Mohamed, S. H., Müller, B. J.: Continuous and Discrete Modules. London Mathematical Society Lecture Note Series, Vol. 147, Cambridge University Press (1990).
  • [3] Crivei, S., Keskin Tütüncü, D., Radu, S. M., Tribak, R.: CS-Baer and dual CS-Baer objects in abelian categories. Journal of Algebra and Its Applications. 22(10), 2350220 (2023).
  • [4] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. 2nd edition, Springer-Verlag, New York (1992).
  • [5] Crivei, S., Radu, S. M.: CS-Rickart and dual CS-Rickart objects in abelian categories. Bulletin of Belgian Mathematical Society-Simon Stevin. 29(1), 99–122 (2022).
  • [6] Tribak, R.: Dual CS-Rickart modules over Dedekind domains. Algebras and Representation Theory. 23, 229–250 (2020).
  • [7] Keskin, D., Smith, P. F., Xue,W.: Rings whose modules are ⊕-supplemented. Journal of Algebra. 218(2), 470–487 (1999).
  • [8] Büyükaşık, E., Lomp, C.: On recent generalization of semiperfect rings. Bulletin of the Australian Mathematical Society. 78(2), 317–325 (2008).
  • [9] Warfield, R. B.: Serial rings and finitely presented modules. Journal of Algebra. 37(2), 187–222 (1975).
  • [10] Brandal, W.: Commutative Rings Whose Finitely Generated Modules Decompose. Lecture Notes in Mathematics, Vol. 723, Springer-Verlag, Berlin (1979).
  • [11] Harmancı, A., Keskin, D., Smith, P. F.: On ⊕-supplemented modules. Acta Mathematica Hungarica. 83 , 161–169 (1999).
There are 11 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Nuray Eroğlu 0000-0002-0780-2247

Early Pub Date April 30, 2024
Publication Date September 24, 2024
Submission Date March 30, 2024
Acceptance Date April 30, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Eroğlu, N. (2024). Rings Whose Certain Modules are Dual Self-CS-Baer. Mathematical Sciences and Applications E-Notes, 12(3), 113-118. https://doi.org/10.36753/mathenot.1461857
AMA Eroğlu N. Rings Whose Certain Modules are Dual Self-CS-Baer. Math. Sci. Appl. E-Notes. September 2024;12(3):113-118. doi:10.36753/mathenot.1461857
Chicago Eroğlu, Nuray. “Rings Whose Certain Modules Are Dual Self-CS-Baer”. Mathematical Sciences and Applications E-Notes 12, no. 3 (September 2024): 113-18. https://doi.org/10.36753/mathenot.1461857.
EndNote Eroğlu N (September 1, 2024) Rings Whose Certain Modules are Dual Self-CS-Baer. Mathematical Sciences and Applications E-Notes 12 3 113–118.
IEEE N. Eroğlu, “Rings Whose Certain Modules are Dual Self-CS-Baer”, Math. Sci. Appl. E-Notes, vol. 12, no. 3, pp. 113–118, 2024, doi: 10.36753/mathenot.1461857.
ISNAD Eroğlu, Nuray. “Rings Whose Certain Modules Are Dual Self-CS-Baer”. Mathematical Sciences and Applications E-Notes 12/3 (September 2024), 113-118. https://doi.org/10.36753/mathenot.1461857.
JAMA Eroğlu N. Rings Whose Certain Modules are Dual Self-CS-Baer. Math. Sci. Appl. E-Notes. 2024;12:113–118.
MLA Eroğlu, Nuray. “Rings Whose Certain Modules Are Dual Self-CS-Baer”. Mathematical Sciences and Applications E-Notes, vol. 12, no. 3, 2024, pp. 113-8, doi:10.36753/mathenot.1461857.
Vancouver Eroğlu N. Rings Whose Certain Modules are Dual Self-CS-Baer. Math. Sci. Appl. E-Notes. 2024;12(3):113-8.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.