Research Article
BibTex RIS Cite

Year 2025, Volume: 11 Issue: 4, 383 - 400, 30.11.2025
https://doi.org/10.19127/mbsjohs.1787320
https://izlik.org/JA39WT53NM

Abstract

Ethical Statement

Etik onay gerektirmemektedir

Supporting Institution

yok

Project Number

no

Thanks

yok

References

  • Fabres L F, dos Santos SPR, Benitez LB & Rott MB. Isolation and identification of Acanthamoeba spp. from thermal swimming pools and spas in Southern Brazil. Acta Parasitologica 2016; 61, 221-227. https://doi.org/10.1515/ap-2016-0031
  • Saburi E, Rajaii T, Behdari A, Kohansal MH. & Vazini H. Free-living amoebae in the water resources of Iran: a systematic review. Journal of Parasitic Diseases 2017; 41, 919-928. https://doi.org/10.1007/s12639-017-0950-2
  • Xuan Y, Shen Y, Ge Y, Yan G & Zheng S. Isolation and identification of Acanthamoeba strains from soil and tap water in Yanji, China. Environmental Health and Preventive Medicine 2017; 22-58. https://doi.org/10.1186/s12199-017-0655-2
  • Ozcelik S, Yunlu O & Ozpinar N. Isolation and morphotyping of Acanthamoeba spp. and Vermamoeba spp. from hospital air-conditioning systems. Cumhuriyet Medical Journal 2017; 39, 369-373. https://doi.org/ 10.7197/cmj.v39i1.5000194070
  • Kot K, Lanocha-Arendarczyk NA & Kosik-Bogacka DI. Amoebas from the genus Acanthamoeba and their pathogenic properties. Annals of Parasitology, 2018; 64(4). https://doi.org/ 10.17420/ap6404.164
  • Ozpinar N, Culha G, Kaya T & Yucel H. The amoebicidal activity of three substances derived from benzothiazole on Acanthamoeba castellanii cysts and trophozoites and its cytotoxic potentials. Acta Tropica 2021; 220, 105981. https://doi.org/10.1016/j.actatropica.2021.105981
  • Ozpinar N, Ozpinar H, Bakay BB & Tunc T. Amoebicidal activity of benzothiazole on Acanthamoeba castellanii cysts and trophozoites and its cytotoxic potentials. Acta Tropica 2020; 203, 105322. https://doi.org/10.1016/j.actatropica.2019.105322
  • Shing B, Singh S, Podust LM. The antifungal drug isavuconazole is both amoebicidal and cysticidal against Acanthamoeba castellanii. Antimicrobial agents and chemotherapy 2020; 64:10.1128/aac. 02223-02219
  • Duncan R. Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway?. Pharmaceutical Science & Technology Today. 1999; 2, 441-449.
  • Yao B, Huang H, Liu Y & Kang Z. Carbon dots: a small conundrum. Trends in Chemistry 2019; 1, 235-246. https://doi.org/10.1016/j.trechm.2019.02.003
  • Roy P, Chen PC, Periasamy AP, Chen YN & Chang HT. Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Materials Today 2015; 18, 447-458. https://doi.org/10.1016/j.mattod.2015.04.005
  • Thangaraj B, Solomon PR & Ranganathan S. Synthesis of carbon quantum dots with special reference to biomass as a source-a review. Current Pharmaceutical Design 2019; 25, 1455-1476. https://doi.org/10.2174/1381612825666190618154518
  • Rigodanza F, Burian M, Arcudi F, Đorđević L, Amenitsch H & Prato M. Snapshots into carbon dots formation through a combined spectroscopic approach Nature Communications 2021; 12, 2640. https://doi.org/10.1038/s41467-021-22902-w
  • Aydemir O, Terzi HA, Köroğlu M, Altındiş M. Piperacillin / tazobactam in-vitro activity in Escherichia coli and Klebsiella pneumoniae strains with extended spectrum beta-lactamase production. Online Turkish Journal of Health Sciences. 2019;4(2):118-27.
  • Zheng D, Li B, Li C, Fan J, Lei Q, Li C, Xu Z & Zhang X. Carbondot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano. 2016; 10 (9), 8715–8722. https://doi.org/10.1021/acsnano.6b04156
  • Ren J, Malfatti L & Innocenzi P. Citric acid derived carbon dots, the challenge of understanding the synthesis-structure relationship. C, 2021; 7(1), 2. https://doi.org/10.3390/c7010002
  • Mansuriya BD & Altintas Z. Carbon dots: classification, properties, synthesis, characterization, and applications in health care an updated review (2018–2021). Nanomaterials. 2021; 11, 2525. https://doi.org/10.3390/nano11102525
  • Meloni M, Stagi L, Sanna D, Garroni S, Calvillo L, Terracina A, Cannas M, Messina F, Carbonaro CM & Innocenzi P. Harnessing molecular fluorophores in the carbon dots matrix: the case of safranin O. Nanomaterials 2022; 12, 2351. https://doi.org/10.3390/nano12142351
  • Zhang Z, Fraser A, Ye S, Merle G & Barralet J. Top-down bottom-up graphene synthesis. Nano Futures 2019; 3, 042003. https://doi.org/ 10.1088/2399-1984/ab4eff
  • Olatomiwa AL, Adam T, Gopinath SC, Kolawole SY, Olayinka OH & Hashim U. Graphene synthesis, fabrication, characterization based on bottom-up and top-down approaches: An overview. Journal of Semiconductors 2022; 43, 061101. https://doi.org/ 10.1088/1674-4926/43/6/061101
  • Yan F, Jiang Y, Sun X, Bai Z, Zhang Y & Zhou X. Surface modification and chemical functionalization of carbon dots: a review. Microchimica Acta 2018; 185, 1-34. https://doi.org/10.1007/s00604-018-2953-9
  • Shehab WS, Aziz MA, Elhoseni NKR, Assy MG, Abdellattif MH & Hamed EO. Design, synthesis, molecular docking, and evaluation antioxidant and antimicrobial activities for novel 3-phenylimidazolidin-4-one and 2-aminothiazol-4-one derivatives. Molecules 2022; 27, 767. https://doi.org/10.3390/molecules27030767
  • Karakus G. Design, Synthesis and Characterization of 1, 2-Phenylenediamine Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) as a Potential New Bioactive Formulation. Hittite Journal of Science and Engineering 2022; 9, 305-311. https://doi.org/10.17350/HJSE19030000284
  • Karakus G, Polat ZA, Yenidunya AF, Zengin HB & Karakus CB. Synthesis, characterization and cytotoxicity of novel modified poly [(maleic anhydride)‐co‐(vinyl acetate)]/noradrenaline conjugate. Polymer international 2013; 62, 492-500. https://doi.org/10.1002/pi.4341
  • Karakuş G. Synthesis, structural characterization, and water solubility of a novel modified poly maleic anhydride-co-vinyl acetate/acriflavine conjugate. Hacettepe Journal of Biology and Chemistry. 2016; 44, 549-558.
  • Karakus G, Can HK & Yaglioglu AS. Synthesis, structural characterization, thermal behavior and cytotoxic/antiproliferative activity assessments of poly (maleic anhydride-alt-acrylic acid)/hydroxyurea polymer/drug conjugate. Journal of Molecular Structure 2020; 1210, 127989. https://doi.org/10.1016/j.molstruc.2020.127989
  • Karakus G, Yaglioglu AS, Zengin H & Karakus N. Synthesis, characterization and antiproliferative activities of novel modified poly (maleic anhydride-co-vinyl acetate)/cytosine β-Darabinofuranoside hydrochloride conjugate. Marmara Pharmaceutical Journal 2015; 19, 73-81. https://doi.org/ 10.12991/mpj.2015198613
  • Jensen T, Barnes WG & Meyers D. Axenic cultivation of large populations of Acanthamoeba castellanii (JBM). The Journal of Parasitology, 1970; 904-906. https://doi.org/10.2307/3277503
  • Moon EK, Chung DI, Hong YC, Ahn TI & Kong HH. Acanthamoeba castellanii: gene profile of encystation by ESTs analysis and KOG assignment. Experimental Parasitology 2008; 119, 111-116. https://doi.org/10.1016/j.exppara.2008.01.001
  • Lorenzo-Morales J, Martín-Navarro CM, López-Arencibia A, Santana-Morales MA, Afonso-Lehmann RN, Maciver SK, Valladares B & Martínez-Carretero E. Therapeutic potential of a combination of two gene-specific small interfering RNAs against clinical strains of Acanthamoeba. Antimicrobial Agents and Chemotherapy 2010; 54, 5151-5155. https://doi.org/10.1128/aac.00329-10
  • Mengue L, Régnacq M, Aucher W, Portier E, Héchard Y & Samba-Louaka A. Legionella pneumophila prevents proliferation of its natural host Acanthamoeba castellanii. Scientific Reports 2016; 6, 36448. https://doi.org/ 10.1038/srep36448
  • Kazacos KR, Jelicks LA & Tanowitz HB. Baylisascaris larva migrans. Handbook of Clinical Neurology, 2013; 114, 251-262. https://doi.org/10.1016/B978-0-444-53490-3.00020-0
  • Marciano-Cabral F & Cabral G. Acanthamoeba spp. as agents of disease in humans. Clinical Microbiology Reviews. 2003; 16(2), 273-307. https://doi.org/10.1128/cmr.16.2.273-307.2003
  • Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, Bertelli C, Schilde C, Kianianmomeni A, Bürglin TR. et al. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biology 2013; 14, 1-15.
  • Oldenburg CE, Acharya NR, Tu EY, Zegans ME, Mannis MJ, Gaynor BD, Whitcher JP, Lietman TM & Keenan JD. Practice patterns and opinions in the treatment of acanthamoeba keratitis. Cornea 2011; 30, 1363. https://doi.org/ 10.1097/ICO.0b013e31820f7763
  • Anwar A, Khan NA & Siddiqui R. Combating Acanthamoeba spp. cysts: what are the options?. Parasites & Vectors 2018; 11, 1-6. https://doi.org/ 10.1186/s13071-017-2572-z
  • Turner N, Russell A, Furr J & Lloyd D. Emergence of resistance to biocides during differentiation of Acanthamoeba castellanii. Journal of Antimicrobial Chemotherapy 2000; 46, 27-34. https://doi.org/10.1093/jac/46.1.27
  • Karakuş G, Malatyalı E, Zengin H & Değerli S. In vitro amoebicidal activity of poly (maleic anhydride-co-vinyl acetate) copolymer on Acanthamoeba spp. trophozoites and cysts. Basic and Clinical Sciences, 2013;2, 1-14. https://doi.org/10.12808/bcs.v2i1.16

The amoebicidal effect of New Bioactive o-Phenylenediamine Surface Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) and Citric Acid Derived Carbon Quantum Nanodot-Based Conjugates on Acanthamoeba castellanii cysts and trophozoites and its cytotoxic potentials

Year 2025, Volume: 11 Issue: 4, 383 - 400, 30.11.2025
https://doi.org/10.19127/mbsjohs.1787320
https://izlik.org/JA39WT53NM

Abstract

Objective: This study aimed to evaluate the amoebicidal activity of o-phenylenediamine (o-PDA)-conjugated carrier systems, including maleic anhydride-vinyl acetate alternating copolymer (MAVA) and citric acid-derived carbon quantum dots (CNDs), against Acanthamoeba castellanii cysts and trophozoites. Additionally, the cytotoxicity of these compounds was assessed on the HT-22 Mouse Hippocampal Neuronal cell line.
Method: Two non-toxic carrier systems were synthesized: MAVA via charge transfer complex (CTC) radical polymerization, and CNDs via rapid thermal pyrolysis of citric acid. o-PDA surface conjugation was achieved through an amide mechanism after the ring-opening reaction. The synthesized compounds were tested for their amoebicidal effects on A. castellanii cysts and trophozoites, while cytotoxicity analyses were conducted using the HT-22 neuronal cell line.
Results: According to our findings, the cytotoxicity of all compounds at the tested concentrations was within an acceptable range. When examining the amoebicidal activities, it was observed that MAVA at concentrations of 0.01 g/mL and 0.005 g/mL did not have any viable trophozoites, while CNDs at a concentration of 0.01 g/mL did not have any viable cysts. Overall, all compounds showed significant amoebicidal activity.
Conclusion: Our findings demonstrate a strong dose-dependent amoebicidal effect of these substances on A. castellanii cysts and trophozoites. It is believed that these substances, supported by in vivo experiments, could potentially serve as new therapeutic agents.

Ethical Statement

no

Supporting Institution

no

Project Number

no

Thanks

no

References

  • Fabres L F, dos Santos SPR, Benitez LB & Rott MB. Isolation and identification of Acanthamoeba spp. from thermal swimming pools and spas in Southern Brazil. Acta Parasitologica 2016; 61, 221-227. https://doi.org/10.1515/ap-2016-0031
  • Saburi E, Rajaii T, Behdari A, Kohansal MH. & Vazini H. Free-living amoebae in the water resources of Iran: a systematic review. Journal of Parasitic Diseases 2017; 41, 919-928. https://doi.org/10.1007/s12639-017-0950-2
  • Xuan Y, Shen Y, Ge Y, Yan G & Zheng S. Isolation and identification of Acanthamoeba strains from soil and tap water in Yanji, China. Environmental Health and Preventive Medicine 2017; 22-58. https://doi.org/10.1186/s12199-017-0655-2
  • Ozcelik S, Yunlu O & Ozpinar N. Isolation and morphotyping of Acanthamoeba spp. and Vermamoeba spp. from hospital air-conditioning systems. Cumhuriyet Medical Journal 2017; 39, 369-373. https://doi.org/ 10.7197/cmj.v39i1.5000194070
  • Kot K, Lanocha-Arendarczyk NA & Kosik-Bogacka DI. Amoebas from the genus Acanthamoeba and their pathogenic properties. Annals of Parasitology, 2018; 64(4). https://doi.org/ 10.17420/ap6404.164
  • Ozpinar N, Culha G, Kaya T & Yucel H. The amoebicidal activity of three substances derived from benzothiazole on Acanthamoeba castellanii cysts and trophozoites and its cytotoxic potentials. Acta Tropica 2021; 220, 105981. https://doi.org/10.1016/j.actatropica.2021.105981
  • Ozpinar N, Ozpinar H, Bakay BB & Tunc T. Amoebicidal activity of benzothiazole on Acanthamoeba castellanii cysts and trophozoites and its cytotoxic potentials. Acta Tropica 2020; 203, 105322. https://doi.org/10.1016/j.actatropica.2019.105322
  • Shing B, Singh S, Podust LM. The antifungal drug isavuconazole is both amoebicidal and cysticidal against Acanthamoeba castellanii. Antimicrobial agents and chemotherapy 2020; 64:10.1128/aac. 02223-02219
  • Duncan R. Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway?. Pharmaceutical Science & Technology Today. 1999; 2, 441-449.
  • Yao B, Huang H, Liu Y & Kang Z. Carbon dots: a small conundrum. Trends in Chemistry 2019; 1, 235-246. https://doi.org/10.1016/j.trechm.2019.02.003
  • Roy P, Chen PC, Periasamy AP, Chen YN & Chang HT. Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Materials Today 2015; 18, 447-458. https://doi.org/10.1016/j.mattod.2015.04.005
  • Thangaraj B, Solomon PR & Ranganathan S. Synthesis of carbon quantum dots with special reference to biomass as a source-a review. Current Pharmaceutical Design 2019; 25, 1455-1476. https://doi.org/10.2174/1381612825666190618154518
  • Rigodanza F, Burian M, Arcudi F, Đorđević L, Amenitsch H & Prato M. Snapshots into carbon dots formation through a combined spectroscopic approach Nature Communications 2021; 12, 2640. https://doi.org/10.1038/s41467-021-22902-w
  • Aydemir O, Terzi HA, Köroğlu M, Altındiş M. Piperacillin / tazobactam in-vitro activity in Escherichia coli and Klebsiella pneumoniae strains with extended spectrum beta-lactamase production. Online Turkish Journal of Health Sciences. 2019;4(2):118-27.
  • Zheng D, Li B, Li C, Fan J, Lei Q, Li C, Xu Z & Zhang X. Carbondot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano. 2016; 10 (9), 8715–8722. https://doi.org/10.1021/acsnano.6b04156
  • Ren J, Malfatti L & Innocenzi P. Citric acid derived carbon dots, the challenge of understanding the synthesis-structure relationship. C, 2021; 7(1), 2. https://doi.org/10.3390/c7010002
  • Mansuriya BD & Altintas Z. Carbon dots: classification, properties, synthesis, characterization, and applications in health care an updated review (2018–2021). Nanomaterials. 2021; 11, 2525. https://doi.org/10.3390/nano11102525
  • Meloni M, Stagi L, Sanna D, Garroni S, Calvillo L, Terracina A, Cannas M, Messina F, Carbonaro CM & Innocenzi P. Harnessing molecular fluorophores in the carbon dots matrix: the case of safranin O. Nanomaterials 2022; 12, 2351. https://doi.org/10.3390/nano12142351
  • Zhang Z, Fraser A, Ye S, Merle G & Barralet J. Top-down bottom-up graphene synthesis. Nano Futures 2019; 3, 042003. https://doi.org/ 10.1088/2399-1984/ab4eff
  • Olatomiwa AL, Adam T, Gopinath SC, Kolawole SY, Olayinka OH & Hashim U. Graphene synthesis, fabrication, characterization based on bottom-up and top-down approaches: An overview. Journal of Semiconductors 2022; 43, 061101. https://doi.org/ 10.1088/1674-4926/43/6/061101
  • Yan F, Jiang Y, Sun X, Bai Z, Zhang Y & Zhou X. Surface modification and chemical functionalization of carbon dots: a review. Microchimica Acta 2018; 185, 1-34. https://doi.org/10.1007/s00604-018-2953-9
  • Shehab WS, Aziz MA, Elhoseni NKR, Assy MG, Abdellattif MH & Hamed EO. Design, synthesis, molecular docking, and evaluation antioxidant and antimicrobial activities for novel 3-phenylimidazolidin-4-one and 2-aminothiazol-4-one derivatives. Molecules 2022; 27, 767. https://doi.org/10.3390/molecules27030767
  • Karakus G. Design, Synthesis and Characterization of 1, 2-Phenylenediamine Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) as a Potential New Bioactive Formulation. Hittite Journal of Science and Engineering 2022; 9, 305-311. https://doi.org/10.17350/HJSE19030000284
  • Karakus G, Polat ZA, Yenidunya AF, Zengin HB & Karakus CB. Synthesis, characterization and cytotoxicity of novel modified poly [(maleic anhydride)‐co‐(vinyl acetate)]/noradrenaline conjugate. Polymer international 2013; 62, 492-500. https://doi.org/10.1002/pi.4341
  • Karakuş G. Synthesis, structural characterization, and water solubility of a novel modified poly maleic anhydride-co-vinyl acetate/acriflavine conjugate. Hacettepe Journal of Biology and Chemistry. 2016; 44, 549-558.
  • Karakus G, Can HK & Yaglioglu AS. Synthesis, structural characterization, thermal behavior and cytotoxic/antiproliferative activity assessments of poly (maleic anhydride-alt-acrylic acid)/hydroxyurea polymer/drug conjugate. Journal of Molecular Structure 2020; 1210, 127989. https://doi.org/10.1016/j.molstruc.2020.127989
  • Karakus G, Yaglioglu AS, Zengin H & Karakus N. Synthesis, characterization and antiproliferative activities of novel modified poly (maleic anhydride-co-vinyl acetate)/cytosine β-Darabinofuranoside hydrochloride conjugate. Marmara Pharmaceutical Journal 2015; 19, 73-81. https://doi.org/ 10.12991/mpj.2015198613
  • Jensen T, Barnes WG & Meyers D. Axenic cultivation of large populations of Acanthamoeba castellanii (JBM). The Journal of Parasitology, 1970; 904-906. https://doi.org/10.2307/3277503
  • Moon EK, Chung DI, Hong YC, Ahn TI & Kong HH. Acanthamoeba castellanii: gene profile of encystation by ESTs analysis and KOG assignment. Experimental Parasitology 2008; 119, 111-116. https://doi.org/10.1016/j.exppara.2008.01.001
  • Lorenzo-Morales J, Martín-Navarro CM, López-Arencibia A, Santana-Morales MA, Afonso-Lehmann RN, Maciver SK, Valladares B & Martínez-Carretero E. Therapeutic potential of a combination of two gene-specific small interfering RNAs against clinical strains of Acanthamoeba. Antimicrobial Agents and Chemotherapy 2010; 54, 5151-5155. https://doi.org/10.1128/aac.00329-10
  • Mengue L, Régnacq M, Aucher W, Portier E, Héchard Y & Samba-Louaka A. Legionella pneumophila prevents proliferation of its natural host Acanthamoeba castellanii. Scientific Reports 2016; 6, 36448. https://doi.org/ 10.1038/srep36448
  • Kazacos KR, Jelicks LA & Tanowitz HB. Baylisascaris larva migrans. Handbook of Clinical Neurology, 2013; 114, 251-262. https://doi.org/10.1016/B978-0-444-53490-3.00020-0
  • Marciano-Cabral F & Cabral G. Acanthamoeba spp. as agents of disease in humans. Clinical Microbiology Reviews. 2003; 16(2), 273-307. https://doi.org/10.1128/cmr.16.2.273-307.2003
  • Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, Bertelli C, Schilde C, Kianianmomeni A, Bürglin TR. et al. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biology 2013; 14, 1-15.
  • Oldenburg CE, Acharya NR, Tu EY, Zegans ME, Mannis MJ, Gaynor BD, Whitcher JP, Lietman TM & Keenan JD. Practice patterns and opinions in the treatment of acanthamoeba keratitis. Cornea 2011; 30, 1363. https://doi.org/ 10.1097/ICO.0b013e31820f7763
  • Anwar A, Khan NA & Siddiqui R. Combating Acanthamoeba spp. cysts: what are the options?. Parasites & Vectors 2018; 11, 1-6. https://doi.org/ 10.1186/s13071-017-2572-z
  • Turner N, Russell A, Furr J & Lloyd D. Emergence of resistance to biocides during differentiation of Acanthamoeba castellanii. Journal of Antimicrobial Chemotherapy 2000; 46, 27-34. https://doi.org/10.1093/jac/46.1.27
  • Karakuş G, Malatyalı E, Zengin H & Değerli S. In vitro amoebicidal activity of poly (maleic anhydride-co-vinyl acetate) copolymer on Acanthamoeba spp. trophozoites and cysts. Basic and Clinical Sciences, 2013;2, 1-14. https://doi.org/10.12808/bcs.v2i1.16
There are 38 citations in total.

Details

Primary Language English
Subjects Clinical Microbiology
Journal Section Research Article
Authors

Necati Özpınar 0000-0002-7317-885X

Nihat Karakuş 0000-0001-6223-7669

Tutku Tunç 0000-0002-8274-9386

Ather Farooq Khan 0000-0002-5178-2482

Gülderen Karakuş 0000-0003-2596-9208

Project Number no
Submission Date September 25, 2025
Acceptance Date October 16, 2025
Publication Date November 30, 2025
DOI https://doi.org/10.19127/mbsjohs.1787320
IZ https://izlik.org/JA39WT53NM
Published in Issue Year 2025 Volume: 11 Issue: 4

Cite

Vancouver 1.Özpınar N, Karakuş N, Tunç T, Khan AF, Karakuş G. The amoebicidal effect of New Bioactive o-Phenylenediamine Surface Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) and Citric Acid Derived Carbon Quantum Nanodot-Based Conjugates on Acanthamoeba castellanii cysts and trophozoites and its cytotoxic potentials. Mid Blac Sea J Health Sci [Internet]. 2025 Nov. 1;11(4):383-400. Available from: https://izlik.org/JA39WT53NM