Termoplastikleştirilmiş Gutta-Percha Dolgu Teknikleri Sırasında Periodontal Ligamentte 3B Geçici Doğrusal Sıcaklık Değişimlerinin Sonlu Elemanlar Analizi
Year 2024,
Volume: 25 Issue: 4, 379 - 395, 22.12.2024
Emir Esim
,
Özgür Er
,
Tuğrul Aslan
,
Ayşe Tuğba Eminsoy Avcı
,
Yakup Üstün
Abstract
Amaç: Bu çalışmada, farklı termoplastik guta-perka dolgu tekniklerinin periodontal ligamentte neden olduğu sıcaklık değişimlerini değerlendirmek için sonlu elemanlar analizi kullanıldı.
Yöntemler: SolidWorks yazılımında, kor taşıyıcılı guta-perka dolgu tekniği (KTG) ve devamlı ısı ile kondenzasyon ardından backfill (DIK+BF) tekniğini simüle eden mandibular premolar diş modelleri oluşturuldu.
Bulgular: 7 model analiz edildiğinde, en yüksek sıcaklık değerlerine sahip DIK+BF modellerinde (Model 4 ve Model 7), maksimum sıcaklıkların 127°C’ye yaklaştığı görüldü. Buna karşılık, KTG modeli (Model 1), en düşük maksimum sıcaklık olan 47.835°C’yi gösterdi. Bu sıcaklıklar ağırlıklı olarak apikal bölgede ölçüldü. Vücut sıcaklığının 10°C üzerine çıkma süresi, Model 4 ve Model 7’de en uzun süreyle kaydedildi. KTG tekniği, 0.43 sn boyunca 10.835°C’lik kısa bir sıcaklık artışına neden oldu ve güvenli olduğu değerlendirildi. Ancak, tüm DIK+BF teknikleri, vücut sıcaklığının 10°C üzerine çıktı ve bu süre 14.40 sn’ye kadar uzadı. Daha güvenli DIK+BF uygulamaları için özellikle DIK sırasında düşük sıcaklık ayarlarının tercih edilmesi önerilmektedir.
Sonuç: KTG tekniği minimal sıcaklık artışına neden olmuş ve güvenli görünmektedir. Ancak, BF ile kullanılan DIK tekniği, periodontal ligamente zarar verebilecek önemli ölçüde daha yüksek sıcaklıklara yol açmıştır. Yazarlar, her iki teknikte de özellikle DIK ile daha düşük sıcaklıkların kullanılmasını ve riskleri en aza indirmek için BF tekniğinin çok katmanlı uygulanmasını önermektedir.
References
- 1. Buchanan LS. The continuous wave of condensation technique: a convergence of conceptual and procedural advances in obturation. Dent today. 1994;13(10):80, 82, 84–5.
- 2. Ulusoy Öİ, Yılmazoğlu MZ, Görgül G. Effect of several thermoplastic canal filling techniques on surface temperature rise on roots with simulated internal resorption cavities: an infrared thermographic analysis. International Endodontic Journal. 2015;48(2):171–6.
- 3. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: A vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50(1):101–7.
- 4. Cen R, Wang R, Cheung GSP. Periodontal Blood Flow Protects the Alveolar Bone from Thermal Injury during Thermoplasticized Obturation: A Finite Element Analysis Study. J Endod. 2018;44(1):139–44.
- 5. Kim S, Trowbridge H, Soda H (2002) Pulpul reaction to caries and dental procedures. In: Cohen S, Burns RC (eds) Pathways of the pulp. Mosby, Missouri, p 590.
- 6. Spangberg L (2002) Instruments, materials and devices. In: Cohen S, Burns RC (eds) Pathways of the pulp. Mosby, Missouri, p 565.
- 7. Ramsköld LO, Fong CD, Strömberg T. Thermal effects and antibacterial properties of energy levels required to sterilize stained root canals with an Nd:YAG laser. J Endod. 1997;23(2):96–100.
- 8. ANIĆ I, TACHIBANA H, MASUMOTO K, QI P. Permeability, morphologic and temperature changes of canal dentine walls induced by Nd: YAG, CO2 and argon lasers. Int Endod J. 1996;29(1):13–22.
- 9. Gutknecht N, Franzen R, Meister J, Vanweersch L, Mir M. Temperature evolution on human teeth root surface after diode laser assisted endodontic treatment. Lasers Méd Sci. 2005;20(2):99–103.
- 10. Gambarini G, Piasecki L, Schianchi G, Nardo D, Miccoli G, Sudani D, et al. In vitro evaluation of carrier based obturation technique: a CBCT study. Annali di stomatologia. 2016;7(1–2):11–5.
- 11. Buchanan LS. The continuous wave of obturation technique: “centered” condensation of warm gutta percha in 12 seconds. Dent today. 1996;15(1):60–2, 64–7.
- 12. Gutmann JL, Rakusin H, Powe R, Bowles WH. Evaluation of heat transfer during root canal obturation with thermoplasticized gutta-percha. Part II. In vivo response to heat levels generated. J Endod. 1987;13(9):441–8.
- 13. Cullagh JJPM, Setchell DJ, Gulabivala K, Hussey DL, Biagioni P, Lamey P ‐J., et al. A comparison of thermocouple and infrared thermographic analysis of temperature rise on the root surface during the continuous wave of condensation technique. Int Endod J. 2000;33(4):326–32.
- 14. Zhou X, Chen Y, Wei X, Liu L, Zhang F, Shi Y, et al. Heat transfers to periodontal tissues and gutta-percha during thermoplasticized root canal obturation in a finite element analysis model. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2010;110(2):257–63.
- 15. Er Ö, Yaman SD, Hasan M. Finite element analysis of the effects of thermal obturation in maxillary canine teeth. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2007;104(2):277–86.
- 16. Venturi M, Pasquantonio G, Falconi M, Breschi L. Temperature change within gutta‐percha induced by the System‐B Heat Source. Int Endod J. 2002;35(9):740–6.
- 17. Jr. MMA, Nelson S. Wheeler’s dental anatomy, physiology, and occlusion. 8th ed. St Louis, MO: Elsevier Saunders, St. Louis, Missouri; 2003. 154 p.
- 18. User Manual: Soft-Core® Endodontic Heater and Obturators [Internet]. [cited 2023 Sep 11]. Available from: https://kavokerr.widen.net/content/cc2nsyq8gw/original/softcore-ifu-eng.pdf?u=18sth1&download=true
19. Instructions For Use: ElementsTM IC Obturation System [Internet]. [cited 2023 Sep 11]. Available from: https://embed.widencdn.net/download/kavokerr/h6dfxqdxe5/elements-IC-IFU.pdf?u=18sth1
- 20. Moroi HH, Okimoto K, Moroi R, Terada Y. Numeric approach to the biomechanical analysis of thermal effects in coated implants. Int J Prosthodont. 1993;6(6):564–72.
- 21. Brandrup J, Immergut EH, editors. Polymer handbook. 3rd ed. New York: Wiley; 1989.
- 22. Holman JP, editor. Heat transfer. 4th ed. New York: McGrawHill; 1976. p. 253.
- 23. Lipski M. Root surface temperature rises during root canal obturation, in vitro, by the continuous wave of condensation technique using System B HeatSource. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2005;99(4):505–10.
- 24. Lipski M. In Vitro Infrared Thermographic Assessment of Root Surface Temperatures Generated by High-Temperature Thermoplasticized Injectable Gutta-Percha Obturation Technique. Journal of Endodontics. 2006;32(5):438–41.
- 25. Niu, L., Dong, S. J., Kong, T. T., Wang, R., Zou, R., & Liu, Q. D. Heat Transfer Behavior Across The Dentino-Enamel Junction In The Human Tooth. PloS one. 2016. 11(9), e0158233.
- 26. Lipski M, Woźniak K. In Vitro Infrared Thermographic Assessment of Root Surface Temperature Rises During Thermafil Retreatment Using System B. J Endod. 2003;29(6):413–5.
- 27. Oskui, I. Z., Ashtiani, M. N., Hashemi, A., & Jafarzadeh, H. Thermal analysis of the intact mandibular premolar: a finite element analysis. International Endodontic Journal, 2013; 46(9), 841-846.
FINITE ELEMENT ANALYSIS OF 3D TRANSIENT LINEAR TEMPERATURE CHANGES IN THE PERIODONTAL LIGAMENT DURING THERMOPLASTICIZED GUTTA-PERCHA OBTURATION TECHNIQUES
Year 2024,
Volume: 25 Issue: 4, 379 - 395, 22.12.2024
Emir Esim
,
Özgür Er
,
Tuğrul Aslan
,
Ayşe Tuğba Eminsoy Avcı
,
Yakup Üstün
Abstract
ABSTRACT
Objective: This study used finite element analysis to evaluate temperature changes in the periodontal ligament due to various thermoplasticized gutta-percha obturation techniques.
Methods: Mandibular premolar models were created in SolidWorks software, simulating carrier-based obturation (CBO) and continuous wave of condensation with backfill obturation (CWC+BFO).
Results: Upon analyzing seven models, the study revealed that the CWC+BFO models with the highest temperature settings (Models 4 and 7) recorded the highest maximum temperatures, nearing 127°C. In contrast, the CBO model (Model 1) exhibited the lowest maximum temperature at 47.835°C. These temperatures were primarily measured at the apical region. The duration exceeding 10°C above body temperature was highest in Models 4 and 7. CBO caused a brief 10.835°C rise for 0.43 s, deemed safe, while all CWC+BFO techniques exceeded 10°C above body temperature, lasting up to 14.40 s. Lower temperature settings, particularly during CWC, are recommended for safer CWC+BFO application.
Conclusion: The CBO technique caused minimal temperature increase and appears safe. However, the CWC technique with BFO resulted in significantly higher temperatures, potentially harming the periodontal ligament. The authors recommend using lower temperatures with both techniques, especially with the CWC technique, and applying the BFO technique in multiple layers to minimize risks.
Ethical Statement
This finite element analysis study did not involve the use of human or animal subjects. Therefore, no ethical approval was required.
Supporting Institution
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Thanks
The authors thank Professor Eugene Steele Erciyes University, Kayseri, Türkiye, for his valuable assistance in editing this paper's English. His insights and suggestions helped improve the manuscript's clarity and accuracy.
References
- 1. Buchanan LS. The continuous wave of condensation technique: a convergence of conceptual and procedural advances in obturation. Dent today. 1994;13(10):80, 82, 84–5.
- 2. Ulusoy Öİ, Yılmazoğlu MZ, Görgül G. Effect of several thermoplastic canal filling techniques on surface temperature rise on roots with simulated internal resorption cavities: an infrared thermographic analysis. International Endodontic Journal. 2015;48(2):171–6.
- 3. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: A vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50(1):101–7.
- 4. Cen R, Wang R, Cheung GSP. Periodontal Blood Flow Protects the Alveolar Bone from Thermal Injury during Thermoplasticized Obturation: A Finite Element Analysis Study. J Endod. 2018;44(1):139–44.
- 5. Kim S, Trowbridge H, Soda H (2002) Pulpul reaction to caries and dental procedures. In: Cohen S, Burns RC (eds) Pathways of the pulp. Mosby, Missouri, p 590.
- 6. Spangberg L (2002) Instruments, materials and devices. In: Cohen S, Burns RC (eds) Pathways of the pulp. Mosby, Missouri, p 565.
- 7. Ramsköld LO, Fong CD, Strömberg T. Thermal effects and antibacterial properties of energy levels required to sterilize stained root canals with an Nd:YAG laser. J Endod. 1997;23(2):96–100.
- 8. ANIĆ I, TACHIBANA H, MASUMOTO K, QI P. Permeability, morphologic and temperature changes of canal dentine walls induced by Nd: YAG, CO2 and argon lasers. Int Endod J. 1996;29(1):13–22.
- 9. Gutknecht N, Franzen R, Meister J, Vanweersch L, Mir M. Temperature evolution on human teeth root surface after diode laser assisted endodontic treatment. Lasers Méd Sci. 2005;20(2):99–103.
- 10. Gambarini G, Piasecki L, Schianchi G, Nardo D, Miccoli G, Sudani D, et al. In vitro evaluation of carrier based obturation technique: a CBCT study. Annali di stomatologia. 2016;7(1–2):11–5.
- 11. Buchanan LS. The continuous wave of obturation technique: “centered” condensation of warm gutta percha in 12 seconds. Dent today. 1996;15(1):60–2, 64–7.
- 12. Gutmann JL, Rakusin H, Powe R, Bowles WH. Evaluation of heat transfer during root canal obturation with thermoplasticized gutta-percha. Part II. In vivo response to heat levels generated. J Endod. 1987;13(9):441–8.
- 13. Cullagh JJPM, Setchell DJ, Gulabivala K, Hussey DL, Biagioni P, Lamey P ‐J., et al. A comparison of thermocouple and infrared thermographic analysis of temperature rise on the root surface during the continuous wave of condensation technique. Int Endod J. 2000;33(4):326–32.
- 14. Zhou X, Chen Y, Wei X, Liu L, Zhang F, Shi Y, et al. Heat transfers to periodontal tissues and gutta-percha during thermoplasticized root canal obturation in a finite element analysis model. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2010;110(2):257–63.
- 15. Er Ö, Yaman SD, Hasan M. Finite element analysis of the effects of thermal obturation in maxillary canine teeth. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2007;104(2):277–86.
- 16. Venturi M, Pasquantonio G, Falconi M, Breschi L. Temperature change within gutta‐percha induced by the System‐B Heat Source. Int Endod J. 2002;35(9):740–6.
- 17. Jr. MMA, Nelson S. Wheeler’s dental anatomy, physiology, and occlusion. 8th ed. St Louis, MO: Elsevier Saunders, St. Louis, Missouri; 2003. 154 p.
- 18. User Manual: Soft-Core® Endodontic Heater and Obturators [Internet]. [cited 2023 Sep 11]. Available from: https://kavokerr.widen.net/content/cc2nsyq8gw/original/softcore-ifu-eng.pdf?u=18sth1&download=true
19. Instructions For Use: ElementsTM IC Obturation System [Internet]. [cited 2023 Sep 11]. Available from: https://embed.widencdn.net/download/kavokerr/h6dfxqdxe5/elements-IC-IFU.pdf?u=18sth1
- 20. Moroi HH, Okimoto K, Moroi R, Terada Y. Numeric approach to the biomechanical analysis of thermal effects in coated implants. Int J Prosthodont. 1993;6(6):564–72.
- 21. Brandrup J, Immergut EH, editors. Polymer handbook. 3rd ed. New York: Wiley; 1989.
- 22. Holman JP, editor. Heat transfer. 4th ed. New York: McGrawHill; 1976. p. 253.
- 23. Lipski M. Root surface temperature rises during root canal obturation, in vitro, by the continuous wave of condensation technique using System B HeatSource. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2005;99(4):505–10.
- 24. Lipski M. In Vitro Infrared Thermographic Assessment of Root Surface Temperatures Generated by High-Temperature Thermoplasticized Injectable Gutta-Percha Obturation Technique. Journal of Endodontics. 2006;32(5):438–41.
- 25. Niu, L., Dong, S. J., Kong, T. T., Wang, R., Zou, R., & Liu, Q. D. Heat Transfer Behavior Across The Dentino-Enamel Junction In The Human Tooth. PloS one. 2016. 11(9), e0158233.
- 26. Lipski M, Woźniak K. In Vitro Infrared Thermographic Assessment of Root Surface Temperature Rises During Thermafil Retreatment Using System B. J Endod. 2003;29(6):413–5.
- 27. Oskui, I. Z., Ashtiani, M. N., Hashemi, A., & Jafarzadeh, H. Thermal analysis of the intact mandibular premolar: a finite element analysis. International Endodontic Journal, 2013; 46(9), 841-846.