Monitoring methane emissions in livestock with an IoT-based early warning system
Year 2025,
Volume: 38 Issue: 3, 159 - 162, 16.12.2025
Hulusi Akcay
,
Cansu Durmaz
Abstract
This study aims to develop an IoT-based early warning system to mitigate and monitor the negative effects of methane gas emissions from the agricultural sector on animal health, the environment, and productivity. A portable system was designed to enable wireless communication via a NodeMCU-ESP8266 microcontroller using an MQ-4 methane gas sensor and a DHT11 humidity and temperature sensor. Laboratory and field tests have confirmed that the system reliably detects low-concentration methane levels and can send instant alerts via the Telegram application when the threshold of 400 ppm is exceeded. Given the particular sensitivity of newborn calves to the harmful effects of methane gas, the early warning mechanism provided by this system is of critical importance for protecting animal health and preventing losses. This system offers the potential to increase environmental sustainability, improve animal welfare, and minimize productivity losses in the livestock industry. It is suggested that the system can be expanded to detect different gases in the future and that its performance in long-term field applications should be evaluated more comprehensively.
Ethical Statement
Not required
References
-
Beauchemin KA, Kreuzer M, O’Mara F, McAllister TA (2008) Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture 48(2): 21-27.
-
FAO (2013) Mitigation of greenhouse gas emissions in livestock production. A review of technical options for non-CO2emissions. Rome, Italy.
-
Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. FAO, ISBN: 9789251079201.
-
Hawkins S (2021) How to manage toxic and suffocating manure gases (W 1052). University of Tennessee Extension. https://utbeef.tennessee.edu/wp-content/uploads/sites/127/2023/03/W1052.pdf.
-
Jo YH, Kwon YS, Lee JW, Park JS, Rho BH, Choi WI (2013) Acute respiratory distress due to methane inhalation. Tuberculosis and Respiratory Diseases 74(3): 120-123. doi:10.4046/trd.2013.74.3.120.
-
Karakurt I, Aydın G, Aydıner K (2012) Sources and mitigation of methane emissions by sectors: a critical review. Renewable Energy 39(1): 40-48. doi:10.1016 /j.renene.2011.09.006.
-
Kılıç I, Şimşek E (2009) Hayvan Barınaklarından Kaynaklanan Gaz Emisyonları ve Çevresel Etkileri. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 14(2).
-
Kılıç H N, Boğa M (2021) Hayvan besleme stratejileri ile metan emisyonunun azaltılması. Turkish Journal of Agriculture-Food Science and Technology 9(9): 1700-1713. doi:10.24925/turjaf.v9i9.1700-1713.4446.
-
Lileikis T, Nainienė R, Bliznikas S, Uchockis V (2023) Dietary Ruminant Enteric Methane Mitigation Strategies: Current Findings, Potential Risks and Applicability. Animals 13(16): 2586. doi:10.3390/ani13162586.
-
Moumen A, Azizi G, Chekroun K B, Baghour M (2016) The effects of livestock methane emission on the global warming: a review. International Journal of Global Warming 9(2): 229-253. doi:10.1504/IJGW.2016.074956.
-
Naqvi SM, Sejian V (2011) Global climate change: Role of livestock. Asian Journal of Agricultural Sciences 3(1): 19-25.
-
Nosalewicz M, Brzezinska M, Pasztelan M, Supryn G (2011) Methane In the environment (a review). Acta Agrophysica 18(2): 355-373.
-
Nour MM, Cheng YH, Ni JQ, Sheldon E, Field WE (2021) Summary of Injuries and Fatalities Involving Livestock Manure Storage, Handling, and Transport Operations in Seven Central States: 1976-2019. Journal of Agricultural Safety and Health 27(2): 105-122. doi:10.13031/jash.14343.
-
Üçok S (2016) Sebze ve meyve pazar atıklarının biyogaz üretim potansiyelinin belirlenmesi üzerine bir araştırma Yüksek lisans tezi, Kahramanmaraş Sütçü İmam Üniversitesi Biyosistem Mühendisliği Anabilim Dalı.
Monitoring methane emissions in livestock with an IoT-based early warning system
Year 2025,
Volume: 38 Issue: 3, 159 - 162, 16.12.2025
Hulusi Akcay
,
Cansu Durmaz
Abstract
This study aims to develop an IoT-based early warning system to mitigate and monitor the negative effects of methane gas emissions from the agricultural sector on animal health, the environment, and productivity. A portable system was designed to enable wireless communication via a NodeMCU-ESP8266 microcontroller using an MQ-4 methane gas sensor and a DHT11 humidity and temperature sensor. Laboratory and field tests have confirmed that the system reliably detects low-concentration methane levels and can send instant alerts via the Telegram application when the threshold of 400 ppm is exceeded. Given the particular sensitivity of newborn calves to the harmful effects of methane gas, the early warning mechanism provided by this system is of critical importance for protecting animal health and preventing losses. This system offers the potential to increase environmental sustainability, improve animal welfare, and minimize productivity losses in the livestock industry. It is suggested that the system can be expanded to detect different gases in the future and that its performance in long-term field applications should be evaluated more comprehensively.
Ethical Statement
Gerekli değidir
References
-
Beauchemin KA, Kreuzer M, O’Mara F, McAllister TA (2008) Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture 48(2): 21-27.
-
FAO (2013) Mitigation of greenhouse gas emissions in livestock production. A review of technical options for non-CO2emissions. Rome, Italy.
-
Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. FAO, ISBN: 9789251079201.
-
Hawkins S (2021) How to manage toxic and suffocating manure gases (W 1052). University of Tennessee Extension. https://utbeef.tennessee.edu/wp-content/uploads/sites/127/2023/03/W1052.pdf.
-
Jo YH, Kwon YS, Lee JW, Park JS, Rho BH, Choi WI (2013) Acute respiratory distress due to methane inhalation. Tuberculosis and Respiratory Diseases 74(3): 120-123. doi:10.4046/trd.2013.74.3.120.
-
Karakurt I, Aydın G, Aydıner K (2012) Sources and mitigation of methane emissions by sectors: a critical review. Renewable Energy 39(1): 40-48. doi:10.1016 /j.renene.2011.09.006.
-
Kılıç I, Şimşek E (2009) Hayvan Barınaklarından Kaynaklanan Gaz Emisyonları ve Çevresel Etkileri. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 14(2).
-
Kılıç H N, Boğa M (2021) Hayvan besleme stratejileri ile metan emisyonunun azaltılması. Turkish Journal of Agriculture-Food Science and Technology 9(9): 1700-1713. doi:10.24925/turjaf.v9i9.1700-1713.4446.
-
Lileikis T, Nainienė R, Bliznikas S, Uchockis V (2023) Dietary Ruminant Enteric Methane Mitigation Strategies: Current Findings, Potential Risks and Applicability. Animals 13(16): 2586. doi:10.3390/ani13162586.
-
Moumen A, Azizi G, Chekroun K B, Baghour M (2016) The effects of livestock methane emission on the global warming: a review. International Journal of Global Warming 9(2): 229-253. doi:10.1504/IJGW.2016.074956.
-
Naqvi SM, Sejian V (2011) Global climate change: Role of livestock. Asian Journal of Agricultural Sciences 3(1): 19-25.
-
Nosalewicz M, Brzezinska M, Pasztelan M, Supryn G (2011) Methane In the environment (a review). Acta Agrophysica 18(2): 355-373.
-
Nour MM, Cheng YH, Ni JQ, Sheldon E, Field WE (2021) Summary of Injuries and Fatalities Involving Livestock Manure Storage, Handling, and Transport Operations in Seven Central States: 1976-2019. Journal of Agricultural Safety and Health 27(2): 105-122. doi:10.13031/jash.14343.
-
Üçok S (2016) Sebze ve meyve pazar atıklarının biyogaz üretim potansiyelinin belirlenmesi üzerine bir araştırma Yüksek lisans tezi, Kahramanmaraş Sütçü İmam Üniversitesi Biyosistem Mühendisliği Anabilim Dalı.