Research Article
BibTex RIS Cite

The effect of different conditions on the shredding of vineyard pruning residue

Year 2025, Volume: 38 Issue: 3, 139 - 146, 16.12.2025
https://doi.org/10.29136/mediterranean.1809489

Abstract

A considerable amount of pruning residues are generated annually following pruning activities in fruit-growing regions. The proper management of these residues plays a crucial role in maintaining both the sustainability and productivity of fruit production systems. Given the diversity of pruning residues in terms of material characteristics and utilization potential, it is essential to propose suitable strategies based on regional and economic conditions. Among the key challenges in this regard is determining the most efficient methods for utilizing pruning residues. Shredding, which ensures the conversion of residues into desired particle sizes and shapes at minimal cost, is one of the most critical stages of these utilization methods. This study investigates the optimal operational parameters for the shredding process, addressing practical considerations for both agricultural machinery operators and vineyard growers. To achieve this, vineyard pruning residues with three different moisture content levels were shredded using two blade types at three distinct rotor speeds. Experimental results revealed that at a rotor speed of 1800 rpm (S3) and a moisture content of 25% (M3), the energy consumption was 6.19 kWh t⁻¹, the machine capacity was 1.47 t h⁻¹, and the cost per unit dry mass was USD 9.2 t⁻¹ for the B2 blade type. Analysis of variance indicated that variations in rotor speed and material moisture content significantly affected specific energy requirements, machine capacity, and particle size, whereas the influence of blade type on these parameters was not statistically significant (P<0.05).

References

  • An P, Tang H, Li C, Fang K, Lu S, Zhang J (2022) A fast and practical method for determining particle size and shape by using smartphone photogrammetry. Measurement 193: 110943. doi:10.1016/j.measurement.2022.110943.
  • ASABE (2006) S358.2: Moisture measurement -forages. St. Joseph, Mich.
  • ASABE (2015) Agricultural machinery management data. American Society of Agricultural and Biological Engineers Standards. ASAE D497.7.
  • Bilandzija N, Voca N, Kricka T, Matin A, Jurisic V (2012) Energy potential of fruit tree pruned biomass in Croatia. Spanish Journal of Agricultural Research 10(2): 292-298. doi:10.5424/sjar/2012102-126-11.
  • Calatrava J, Franco JA (2011) Using pruning residues as mulch: Analysis of its adoption and process of diffusion in Southern Spain olive orchards. Journal of Environmental Management 92(3): 620-629. doi:10.1016/j.jenvman.2010.09.023.
  • Çanakcı M (2014) Chopping and mechanization of the pruning residues. Hasad (Harvest) Journal – Plant Production 29(344): 70-78. [in Turkish]
  • Çanakci M, Topakci M, Karayel D, Ağsaran B (2010) Determination of basic machinery management data for PTO driven pruning residue chopper. Journal of Agricultural Sciences 16: 46-54. doi:10.1501/Tarimbil_0000001120. [in Turkish]
  • Canakci M, Topakci M, Karayel D, Agsaran B, Kabas O, Yigit M (2019) The effect of different blades on the performance values of a pruning chopper used to improve soil properties. Bulgarian Journal of Agricultural Science 25(5): 1052-1059. https://journal.agrojournal.org/page/download.php?articleID=2496.
  • Dalen G van (2004) Determination of the size distribution and percentage of broken kernels of rice using flatbed scanning and image analysis. Food Research International 37: 51-58. doi:10.1016/j.foodres.2003.09.001.
  • Dyjakon K, Boer JD, Bukowski P, Adamczyk F, Frąckowiak P (2016) Wooden biomass potential from apple orchards in Poland. Drewno 59(198): 73-86. http://10.12841/wood.1644-3985.162.09.
  • Febbi P, Menesatti P, Costa C, Pari L, Cecchini M (2015) Automated determination of poplar chip size distribution based on combined image and multivariate analyses. Biomass and Bioenergy 73: 1-10. doi:10.1016/j.biombioe.2014.12.001.
  • Giorio C, Pizzini S, Marchiori E, Piazza R, Grigolato S, Zanetti M, Cavalli R, Simoncin M, Soldà L, Badocco D, Tapparo A (2019) Sustainability of using vineyard pruning residues as an energy source: Combustion performances and environmental impact. Fuel 243: 371-380. doi:10.1016/j.fuel.2019.01.128.
  • Gomez-Munoz B, Valero-Valenzuela JD, Hinojosa MB, Garcia-Ruiz R (2016) Management of tree pruning residues to improve soil organic carbon in olive groves. European Journal of Soil Biology 74: 104-113. doi:10.1016/j.ejsobi.2016.03.010.
  • Gonçalves C, Evtyugina M, Alves C, Monteiro C, Pio C, Tomé M (2011) Organic particulate emissions from field burning of garden and agriculture residues. Atmospheric Research 101(3): 666-680. doi:10.1016/j.atmosres.2011.04.017.
  • Holtz BA, Caesar-TonThat T, McKenry MV (2005) Wood chipping almond brunch and its effect on soil and petiole nutrients, soil aggregation, water infiltration, and nematode and basidiomycete population. Options Méditerranéennes Series A 63: 247-254. doi:10.17660/ActaHortic.2004.638.15.
  • Jiménez-Jiménez F, Blanco-Roldán GL, Márquez-García F, Castro-García S, Agüera-Vega J (2013) Estimation of soil coverage of chopped pruning residues in olive orchards by image analysis. Spanish Journal of Agricultural Research 11(3): 626. doi:10.5424/sjar/2013113-3742.
  • Kumara JGHAJ (2012) Image analysis techniques on evaluation of particle size distribution of gravel. International Journal of Geomate doi:10.21660/2012.5.1261.
  • Mani S, Sokhansanj S, Bi X, Turhollow A (2006) Economics of producing fuel pellets from biomass. Applied Engineering in Agriculture 22(3): 421-426. doi:10.13031/2013.20447.
  • Manzanares P, Ruiz E, Ballesteros M, Negro MJ, Gallego FJ, López-Linares JC, Castro E (2017) Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorisation proposal in a biorefinery context. Spanish Journal of Agricultural Research 15(3): e0206. doi:10.5424/sjar/2017153-10868.
  • Margaritis N, Grammelis P, Karampinis E, Kanaveli IP (2020) Impact of torrefaction on vine pruning’s fuel characteristics. Journal of Energy Engineering 146(3). doi:10.1061/(ASCE)EY.1943-7897.0000654.
  • Miyata ES (1980) Determining Fixed and Operating Cost of Logging Equipment. USDA Forest Service, General Technical Report NC-55, North Central Forest Experiment Station, St. Paul-Minnesota, USA, 16 pages. doi:10.2737/NC-GTR-55.
  • Ntalos GA, Grigoriou AH (2002) Characterization and utilisation of vine pruning as a wood substitute for particleboard production. Industrial Crops and Products 16: 59-68. doi:10.1016/S0926-6690(02)00008-0.
  • Repullo MA, Carbonell R, Hidalgo J, Rodríguez-Lizana A and Ordóñez R (2012) Using olive pruning residues to cover soil and improve fertility. Soil and Tillage Research 124: 36-46. doi:10.1016/j.still.2012.04.003.
  • Savoie P, Gagnon-Bouchard M (2012) High-speed processing of woody stems with a flail hammer shredder. Applied Engineering in Agriculture 27(1): 5-12. doi:10.13031/2013.24803.
  • Savoie P, Pilon G, Mani S (2013) Particle size measurement by static and dynamic image analysis for processed woody biomass crops. ASABE Annual International Meeting, Kansas City, Missouri, July 21-24. doi:10.13031/aim.20131578073.
  • Spinelli R, Magagnotti N, Paletto G, Preti C (2011) Determining the impact of some wood characteristics on the performance of a mobile chipper. Silva Fennica 45(1). doi:10.14214/sf.33.
  • Spinelli R, Nati C, Pari L, Mescalchin E, Magagnotti N (2012) Production and quality of biomass fuels from mechanized collection and processing of vineyard pruning residues. Applied Energy 89: 374-379. doi:10.1016/j.apenergy.2011.07.049.
  • Suardi A, Latterini F, Alfano V, Palmieri N, Bergonzoli S, Karampinis E, Kougioumtzis MA, Grammelis P, Pari L (2020) Machine performance and hog fuel quality evaluation in olive tree pruning harvesting conducted using a towed shredder on flat and hilly fields. Energies 13(7): 1713. doi:10.3390/en13071713.
  • Suardi A, Saia S, Alfano V, Rezaei N, Cetera P, Bergonzoli S, Pari L (2021) Pruning harvesting with modular towed chipper: Little effect of the machine setting and configuration on performance despite strong impact on wood chip quality. PLOS ONE 16(12): e0261810. doi:10.1371/journal.pone.0261810.
  • Yang Y (2007) Image and sieve analysis of biomass particle sizes and separation after size reduction. MSc Dissertation, The University of Tennessee, Knoxville, TN.
  • Yiğit M, Çanakcı M (2020) Comparison of the technical and economic performances of two different shredders on pomegranate pruning residues. Spanish Journal of Agricultural Research 18(1): e0202. doi:10.5424/sjar/2020181-14970.

The effect of different conditions on the shredding of vineyard pruning residue

Year 2025, Volume: 38 Issue: 3, 139 - 146, 16.12.2025
https://doi.org/10.29136/mediterranean.1809489

Abstract

A considerable amount of pruning residues are generated annually following pruning activities in fruit-growing regions. The proper management of these residues plays a crucial role in maintaining both the sustainability and productivity of fruit production systems. Given the diversity of pruning residues in terms of material characteristics and utilization potential, it is essential to propose suitable strategies based on regional and economic conditions. Among the key challenges in this regard is determining the most efficient methods for utilizing pruning residues. Shredding, which ensures the conversion of residues into desired particle sizes and shapes at minimal cost, is one of the most critical stages of these utilization methods. This study investigates the optimal operational parameters for the shredding process, addressing practical considerations for both agricultural machinery operators and vineyard growers. To achieve this, vineyard pruning residues with three different moisture content levels were shredded using two blade types at three distinct rotor speeds. Experimental results revealed that at a rotor speed of 1800 rpm (S3) and a moisture content of 25% (M3), the energy consumption was 6.19 kWh t⁻¹, the machine capacity was 1.47 t h⁻¹, and the cost per unit dry mass was USD 9.2 t⁻¹ for the B2 blade type. Analysis of variance indicated that variations in rotor speed and material moisture content significantly affected specific energy requirements, machine capacity, and particle size, whereas the influence of blade type on these parameters was not statistically significant (P<0.05).

References

  • An P, Tang H, Li C, Fang K, Lu S, Zhang J (2022) A fast and practical method for determining particle size and shape by using smartphone photogrammetry. Measurement 193: 110943. doi:10.1016/j.measurement.2022.110943.
  • ASABE (2006) S358.2: Moisture measurement -forages. St. Joseph, Mich.
  • ASABE (2015) Agricultural machinery management data. American Society of Agricultural and Biological Engineers Standards. ASAE D497.7.
  • Bilandzija N, Voca N, Kricka T, Matin A, Jurisic V (2012) Energy potential of fruit tree pruned biomass in Croatia. Spanish Journal of Agricultural Research 10(2): 292-298. doi:10.5424/sjar/2012102-126-11.
  • Calatrava J, Franco JA (2011) Using pruning residues as mulch: Analysis of its adoption and process of diffusion in Southern Spain olive orchards. Journal of Environmental Management 92(3): 620-629. doi:10.1016/j.jenvman.2010.09.023.
  • Çanakcı M (2014) Chopping and mechanization of the pruning residues. Hasad (Harvest) Journal – Plant Production 29(344): 70-78. [in Turkish]
  • Çanakci M, Topakci M, Karayel D, Ağsaran B (2010) Determination of basic machinery management data for PTO driven pruning residue chopper. Journal of Agricultural Sciences 16: 46-54. doi:10.1501/Tarimbil_0000001120. [in Turkish]
  • Canakci M, Topakci M, Karayel D, Agsaran B, Kabas O, Yigit M (2019) The effect of different blades on the performance values of a pruning chopper used to improve soil properties. Bulgarian Journal of Agricultural Science 25(5): 1052-1059. https://journal.agrojournal.org/page/download.php?articleID=2496.
  • Dalen G van (2004) Determination of the size distribution and percentage of broken kernels of rice using flatbed scanning and image analysis. Food Research International 37: 51-58. doi:10.1016/j.foodres.2003.09.001.
  • Dyjakon K, Boer JD, Bukowski P, Adamczyk F, Frąckowiak P (2016) Wooden biomass potential from apple orchards in Poland. Drewno 59(198): 73-86. http://10.12841/wood.1644-3985.162.09.
  • Febbi P, Menesatti P, Costa C, Pari L, Cecchini M (2015) Automated determination of poplar chip size distribution based on combined image and multivariate analyses. Biomass and Bioenergy 73: 1-10. doi:10.1016/j.biombioe.2014.12.001.
  • Giorio C, Pizzini S, Marchiori E, Piazza R, Grigolato S, Zanetti M, Cavalli R, Simoncin M, Soldà L, Badocco D, Tapparo A (2019) Sustainability of using vineyard pruning residues as an energy source: Combustion performances and environmental impact. Fuel 243: 371-380. doi:10.1016/j.fuel.2019.01.128.
  • Gomez-Munoz B, Valero-Valenzuela JD, Hinojosa MB, Garcia-Ruiz R (2016) Management of tree pruning residues to improve soil organic carbon in olive groves. European Journal of Soil Biology 74: 104-113. doi:10.1016/j.ejsobi.2016.03.010.
  • Gonçalves C, Evtyugina M, Alves C, Monteiro C, Pio C, Tomé M (2011) Organic particulate emissions from field burning of garden and agriculture residues. Atmospheric Research 101(3): 666-680. doi:10.1016/j.atmosres.2011.04.017.
  • Holtz BA, Caesar-TonThat T, McKenry MV (2005) Wood chipping almond brunch and its effect on soil and petiole nutrients, soil aggregation, water infiltration, and nematode and basidiomycete population. Options Méditerranéennes Series A 63: 247-254. doi:10.17660/ActaHortic.2004.638.15.
  • Jiménez-Jiménez F, Blanco-Roldán GL, Márquez-García F, Castro-García S, Agüera-Vega J (2013) Estimation of soil coverage of chopped pruning residues in olive orchards by image analysis. Spanish Journal of Agricultural Research 11(3): 626. doi:10.5424/sjar/2013113-3742.
  • Kumara JGHAJ (2012) Image analysis techniques on evaluation of particle size distribution of gravel. International Journal of Geomate doi:10.21660/2012.5.1261.
  • Mani S, Sokhansanj S, Bi X, Turhollow A (2006) Economics of producing fuel pellets from biomass. Applied Engineering in Agriculture 22(3): 421-426. doi:10.13031/2013.20447.
  • Manzanares P, Ruiz E, Ballesteros M, Negro MJ, Gallego FJ, López-Linares JC, Castro E (2017) Residual biomass potential in olive tree cultivation and olive oil industry in Spain: valorisation proposal in a biorefinery context. Spanish Journal of Agricultural Research 15(3): e0206. doi:10.5424/sjar/2017153-10868.
  • Margaritis N, Grammelis P, Karampinis E, Kanaveli IP (2020) Impact of torrefaction on vine pruning’s fuel characteristics. Journal of Energy Engineering 146(3). doi:10.1061/(ASCE)EY.1943-7897.0000654.
  • Miyata ES (1980) Determining Fixed and Operating Cost of Logging Equipment. USDA Forest Service, General Technical Report NC-55, North Central Forest Experiment Station, St. Paul-Minnesota, USA, 16 pages. doi:10.2737/NC-GTR-55.
  • Ntalos GA, Grigoriou AH (2002) Characterization and utilisation of vine pruning as a wood substitute for particleboard production. Industrial Crops and Products 16: 59-68. doi:10.1016/S0926-6690(02)00008-0.
  • Repullo MA, Carbonell R, Hidalgo J, Rodríguez-Lizana A and Ordóñez R (2012) Using olive pruning residues to cover soil and improve fertility. Soil and Tillage Research 124: 36-46. doi:10.1016/j.still.2012.04.003.
  • Savoie P, Gagnon-Bouchard M (2012) High-speed processing of woody stems with a flail hammer shredder. Applied Engineering in Agriculture 27(1): 5-12. doi:10.13031/2013.24803.
  • Savoie P, Pilon G, Mani S (2013) Particle size measurement by static and dynamic image analysis for processed woody biomass crops. ASABE Annual International Meeting, Kansas City, Missouri, July 21-24. doi:10.13031/aim.20131578073.
  • Spinelli R, Magagnotti N, Paletto G, Preti C (2011) Determining the impact of some wood characteristics on the performance of a mobile chipper. Silva Fennica 45(1). doi:10.14214/sf.33.
  • Spinelli R, Nati C, Pari L, Mescalchin E, Magagnotti N (2012) Production and quality of biomass fuels from mechanized collection and processing of vineyard pruning residues. Applied Energy 89: 374-379. doi:10.1016/j.apenergy.2011.07.049.
  • Suardi A, Latterini F, Alfano V, Palmieri N, Bergonzoli S, Karampinis E, Kougioumtzis MA, Grammelis P, Pari L (2020) Machine performance and hog fuel quality evaluation in olive tree pruning harvesting conducted using a towed shredder on flat and hilly fields. Energies 13(7): 1713. doi:10.3390/en13071713.
  • Suardi A, Saia S, Alfano V, Rezaei N, Cetera P, Bergonzoli S, Pari L (2021) Pruning harvesting with modular towed chipper: Little effect of the machine setting and configuration on performance despite strong impact on wood chip quality. PLOS ONE 16(12): e0261810. doi:10.1371/journal.pone.0261810.
  • Yang Y (2007) Image and sieve analysis of biomass particle sizes and separation after size reduction. MSc Dissertation, The University of Tennessee, Knoxville, TN.
  • Yiğit M, Çanakcı M (2020) Comparison of the technical and economic performances of two different shredders on pomegranate pruning residues. Spanish Journal of Agricultural Research 18(1): e0202. doi:10.5424/sjar/2020181-14970.
There are 31 citations in total.

Details

Primary Language English
Subjects Agricultural Machines
Journal Section Research Article
Authors

Mete Yigit 0000-0002-6500-2002

Murad Canakcı 0000-0002-1985-8387

Submission Date October 23, 2025
Acceptance Date December 2, 2025
Publication Date December 16, 2025
Published in Issue Year 2025 Volume: 38 Issue: 3

Cite

APA Yigit, M., & Canakcı, M. (2025). The effect of different conditions on the shredding of vineyard pruning residue. Mediterranean Agricultural Sciences, 38(3), 139-146. https://doi.org/10.29136/mediterranean.1809489
AMA Yigit M, Canakcı M. The effect of different conditions on the shredding of vineyard pruning residue. Mediterranean Agricultural Sciences. December 2025;38(3):139-146. doi:10.29136/mediterranean.1809489
Chicago Yigit, Mete, and Murad Canakcı. “The Effect of Different Conditions on the Shredding of Vineyard Pruning Residue”. Mediterranean Agricultural Sciences 38, no. 3 (December 2025): 139-46. https://doi.org/10.29136/mediterranean.1809489.
EndNote Yigit M, Canakcı M (December 1, 2025) The effect of different conditions on the shredding of vineyard pruning residue. Mediterranean Agricultural Sciences 38 3 139–146.
IEEE M. Yigit and M. Canakcı, “The effect of different conditions on the shredding of vineyard pruning residue”, Mediterranean Agricultural Sciences, vol. 38, no. 3, pp. 139–146, 2025, doi: 10.29136/mediterranean.1809489.
ISNAD Yigit, Mete - Canakcı, Murad. “The Effect of Different Conditions on the Shredding of Vineyard Pruning Residue”. Mediterranean Agricultural Sciences 38/3 (December2025), 139-146. https://doi.org/10.29136/mediterranean.1809489.
JAMA Yigit M, Canakcı M. The effect of different conditions on the shredding of vineyard pruning residue. Mediterranean Agricultural Sciences. 2025;38:139–146.
MLA Yigit, Mete and Murad Canakcı. “The Effect of Different Conditions on the Shredding of Vineyard Pruning Residue”. Mediterranean Agricultural Sciences, vol. 38, no. 3, 2025, pp. 139-46, doi:10.29136/mediterranean.1809489.
Vancouver Yigit M, Canakcı M. The effect of different conditions on the shredding of vineyard pruning residue. Mediterranean Agricultural Sciences. 2025;38(3):139-46.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.