Research Article
BibTex RIS Cite

Tuz stresinin patateste stoma dayanıklılığı ile ilgili Asg1 geni ifade düzeyine etkileri

Year 2017, , 235 - 238, 01.12.2017
https://doi.org/10.29136/mediterranean.359854

Abstract



Abiyotik Stres Geni (Asg1),
abssisik asit (ABA) bağımlı yolakta stres koşullarında ozmotik bir pozitif
regülatör olup, tuz stresi ile indüklenerek stomal kapanma ve stres koşullarına
adaptasyonu teşvik etmekte ve stres sinyal yolağı ile etkileşebilmektedir. Bu
çalışmada da,
in vitro koşullarda
farklı konsantrasyonlarda (50, 100 ve 150 mM) NaCl tuz stresine maruz bırakılan
Hermes
ve Slaney patates çeşitlerinde
stoma
dayanıklığı ile ilgili
Asg1 geninin ifade düzeyleri araştırılmış, tuza toleranslı olduğu
düşünülen Slaney çeşidinde
50 mM NaCl
uygulamasında kontrole göre istatistikî anlamda önemli seviyede (% 90) artış,
tuza hassas olduğu düşünülen Hermes çeşidinde ise 50 mM NaCl uygulamasında
kontrole göre % 16 oranında gen ifadesi düşüşü görülmüştür.




References

  • Batelli G, Massarelli I, Van Oosten M, Nurcato R, Vannini C, Raimondi G, Leone A, Zhu JK, Maggio A, Grillo S (2012) Asg1 is a stress-inducible gene which increases stomatal resistance in salt stressed potato. J Plant Physiol 169 (18): 1849-57.
  • Çulha Ş, Çakırlar H (2011) Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. AKÜ FEBİD 11: 11-34.
  • Hoth S, Morgante M, Sanchez JP, Hanafey MK, Tingey SV, Chua NH (2002) Genome-wide gene expressionprofiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. Journal of Cell Science, 115(24): 4891–4900.
  • Karanlık S (2001) Değişik buğday genotiplerinde tuz stresine dayanıklılık ve dayanıklılığın fizyolojik nedenlerinin araştırılması. Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. PlantPhysiology, 130(4): 2129–2141.
  • Maas EV (1984) Crop tolerance. California Agric 38(10): 20-21.
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance, Annual Review of Plant Biology 59: 651-681.
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant., 15: 473-497.
  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in arabidopsis and grasses. Plant Physiol 149: 88–95.
  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15: 395–401.
  • Ruggiero B, Koiwa H, Manabe Y, Quist TM, Inan G, Saccardo F (2004) Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in arabidopsis. Plant Physiol 136: 3134–3147.
  • Sahi C, Singh A, Blumwald E, Grover A (2006) Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiologia Plantarum, 127(1): 1–9.
  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular Responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology 14: 194-199.
  • Shen Q, Chen CN, Brands A, Pan SM, Tuan-Hua DH (2001) The stress- and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Molecular Biology 45(3): 327–340.
  • Shimazaki T, Endo T, Kasuga M, Yamaguchi-Shinozaki K, Watanabe KN, Kikuchi A (2016) Evaluation of the yield of abiotic-stress-tolerant AtDREB1A transgenic potato under saline conditions in advance of field trials. Breeding Sci 66: 703–710.
  • Tuteja N (2007) Mechanisms of high salinitytolerance in plants. Methods in Enzymology 428: 419-438.
  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basicleucinezipper transcription factors in volved in an abscisicacid-dependent signal transduction pathway under droughtandhigh-salinityconditions. Proceedings of the National Academy of Sciences of the United States of America, 97(21): 11632–11637.
  • Wang H, Miyazaki S, Kawai K, Deyholos M, Galbraith DW, Bohnert HJ (2003) Temporal progression of gene expression responses to salt shock in maize roots. Plant Mol Biol 52: 873–891.
  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133: 29–36.
  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol.; 57: 781–803.
  • Yaşar F (2003) Tuz stresi altındaki patlıcan genotiplerinde bazı antioksidant enzim aktivitelerinin in vitro ve in vivo olarak incelenmesi. Doktora Tezi, Yüzüncü Yıl Üniversitesi Fen Bilimleri, Van.
  • Zhang H, Han B, Wang T, Chen S (2012) Mechanisms of plant salt response: ınsights from proteomics. Journal of Proteome Research 11: 49-67.
  • Zhu JK (2002) Salt and drought stress signal transductıon in plants. Annual Review of Plant Biology 53: 247-73.
  • Zou C, Sun K, Mackaluso JD, Seddon AE, Jin R, Thomashow MF (2011) Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc Natl Acad Sci USA 108: 14992–14997.

The effects of salt stress on expression of Asg1 gene related stomatal resistance in potato

Year 2017, , 235 - 238, 01.12.2017
https://doi.org/10.29136/mediterranean.359854

Abstract

Asg1 gene is induced by salt stress and apositive regulator of osmotic stress response related abscisic acid (ABA) dependent pathway. The gene is very effective on stomatal closure and can interact with the salt stress signal pathway. In this study, expression levels of Asg1 gene were investigated in Hermes and Slaney potato varieties subjected to NaCl salt stress at different concentrations (50, 100 and 150 mM) under in vitro conditions. Asg1 gene showed over expression under salt stress conditions (50 mM NaCl)  in salt tolerant variety Slaney there was a statistically significant (90%) increase in the gene expression, however, expression of the gene decreased under salt stress conditions in Hermes variety when compared with control plants.   




References

  • Batelli G, Massarelli I, Van Oosten M, Nurcato R, Vannini C, Raimondi G, Leone A, Zhu JK, Maggio A, Grillo S (2012) Asg1 is a stress-inducible gene which increases stomatal resistance in salt stressed potato. J Plant Physiol 169 (18): 1849-57.
  • Çulha Ş, Çakırlar H (2011) Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. AKÜ FEBİD 11: 11-34.
  • Hoth S, Morgante M, Sanchez JP, Hanafey MK, Tingey SV, Chua NH (2002) Genome-wide gene expressionprofiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. Journal of Cell Science, 115(24): 4891–4900.
  • Karanlık S (2001) Değişik buğday genotiplerinde tuz stresine dayanıklılık ve dayanıklılığın fizyolojik nedenlerinin araştırılması. Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. PlantPhysiology, 130(4): 2129–2141.
  • Maas EV (1984) Crop tolerance. California Agric 38(10): 20-21.
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance, Annual Review of Plant Biology 59: 651-681.
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant., 15: 473-497.
  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in arabidopsis and grasses. Plant Physiol 149: 88–95.
  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15: 395–401.
  • Ruggiero B, Koiwa H, Manabe Y, Quist TM, Inan G, Saccardo F (2004) Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in arabidopsis. Plant Physiol 136: 3134–3147.
  • Sahi C, Singh A, Blumwald E, Grover A (2006) Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiologia Plantarum, 127(1): 1–9.
  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular Responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology 14: 194-199.
  • Shen Q, Chen CN, Brands A, Pan SM, Tuan-Hua DH (2001) The stress- and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Molecular Biology 45(3): 327–340.
  • Shimazaki T, Endo T, Kasuga M, Yamaguchi-Shinozaki K, Watanabe KN, Kikuchi A (2016) Evaluation of the yield of abiotic-stress-tolerant AtDREB1A transgenic potato under saline conditions in advance of field trials. Breeding Sci 66: 703–710.
  • Tuteja N (2007) Mechanisms of high salinitytolerance in plants. Methods in Enzymology 428: 419-438.
  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basicleucinezipper transcription factors in volved in an abscisicacid-dependent signal transduction pathway under droughtandhigh-salinityconditions. Proceedings of the National Academy of Sciences of the United States of America, 97(21): 11632–11637.
  • Wang H, Miyazaki S, Kawai K, Deyholos M, Galbraith DW, Bohnert HJ (2003) Temporal progression of gene expression responses to salt shock in maize roots. Plant Mol Biol 52: 873–891.
  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133: 29–36.
  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol.; 57: 781–803.
  • Yaşar F (2003) Tuz stresi altındaki patlıcan genotiplerinde bazı antioksidant enzim aktivitelerinin in vitro ve in vivo olarak incelenmesi. Doktora Tezi, Yüzüncü Yıl Üniversitesi Fen Bilimleri, Van.
  • Zhang H, Han B, Wang T, Chen S (2012) Mechanisms of plant salt response: ınsights from proteomics. Journal of Proteome Research 11: 49-67.
  • Zhu JK (2002) Salt and drought stress signal transductıon in plants. Annual Review of Plant Biology 53: 247-73.
  • Zou C, Sun K, Mackaluso JD, Seddon AE, Jin R, Thomashow MF (2011) Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc Natl Acad Sci USA 108: 14992–14997.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Serkan Uranbey

Deniz Köm This is me

Güray Akdoğan This is me

Hussein Abdullah Ahmed Ahmed This is me

Nilüfer Koçak This is me

Muharrem Erdi Kara This is me

Publication Date December 1, 2017
Submission Date May 2, 2017
Published in Issue Year 2017

Cite

APA Uranbey, S., Köm, D., Akdoğan, G., Ahmed, H. A. A., et al. (2017). Tuz stresinin patateste stoma dayanıklılığı ile ilgili Asg1 geni ifade düzeyine etkileri. Mediterranean Agricultural Sciences, 30(3), 235-238. https://doi.org/10.29136/mediterranean.359854
AMA Uranbey S, Köm D, Akdoğan G, Ahmed HAA, Koçak N, Kara ME. Tuz stresinin patateste stoma dayanıklılığı ile ilgili Asg1 geni ifade düzeyine etkileri. Mediterranean Agricultural Sciences. December 2017;30(3):235-238. doi:10.29136/mediterranean.359854
Chicago Uranbey, Serkan, Deniz Köm, Güray Akdoğan, Hussein Abdullah Ahmed Ahmed, Nilüfer Koçak, and Muharrem Erdi Kara. “Tuz Stresinin Patateste Stoma dayanıklılığı Ile Ilgili Asg1 Geni Ifade düzeyine Etkileri”. Mediterranean Agricultural Sciences 30, no. 3 (December 2017): 235-38. https://doi.org/10.29136/mediterranean.359854.
EndNote Uranbey S, Köm D, Akdoğan G, Ahmed HAA, Koçak N, Kara ME (December 1, 2017) Tuz stresinin patateste stoma dayanıklılığı ile ilgili Asg1 geni ifade düzeyine etkileri. Mediterranean Agricultural Sciences 30 3 235–238.
IEEE S. Uranbey, D. Köm, G. Akdoğan, H. A. A. Ahmed, N. Koçak, and M. E. Kara, “Tuz stresinin patateste stoma dayanıklılığı ile ilgili Asg1 geni ifade düzeyine etkileri”, Mediterranean Agricultural Sciences, vol. 30, no. 3, pp. 235–238, 2017, doi: 10.29136/mediterranean.359854.
ISNAD Uranbey, Serkan et al. “Tuz Stresinin Patateste Stoma dayanıklılığı Ile Ilgili Asg1 Geni Ifade düzeyine Etkileri”. Mediterranean Agricultural Sciences 30/3 (December 2017), 235-238. https://doi.org/10.29136/mediterranean.359854.
JAMA Uranbey S, Köm D, Akdoğan G, Ahmed HAA, Koçak N, Kara ME. Tuz stresinin patateste stoma dayanıklılığı ile ilgili Asg1 geni ifade düzeyine etkileri. Mediterranean Agricultural Sciences. 2017;30:235–238.
MLA Uranbey, Serkan et al. “Tuz Stresinin Patateste Stoma dayanıklılığı Ile Ilgili Asg1 Geni Ifade düzeyine Etkileri”. Mediterranean Agricultural Sciences, vol. 30, no. 3, 2017, pp. 235-8, doi:10.29136/mediterranean.359854.
Vancouver Uranbey S, Köm D, Akdoğan G, Ahmed HAA, Koçak N, Kara ME. Tuz stresinin patateste stoma dayanıklılığı ile ilgili Asg1 geni ifade düzeyine etkileri. Mediterranean Agricultural Sciences. 2017;30(3):235-8.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.