Research Article
BibTex RIS Cite

Expression profiles of sorghum (Sorghum bicolor L.) SULTR genes under drought stress

Year 2018, , 67 - 70, 01.04.2018
https://doi.org/10.29136/mediterranean.393096

Abstract

Due to climate changes arising from global warming, drought has become a major problem restricting agricultural production for the last 20 years. Understanding mechanisms that help plants to get adjusted water deficiency is important to come up with yield loss on account of drought. Sulfur and sulfur-containing compounds have significant roles in plants to fight with several stress conditions including drought. Twelve sulfate transporter (SULTR) genes were initially identified in Arabidopsis thaliana and subdivided into four groups based on their protein sequence similarities. SULTR proteins have various functions in plants including sulfate uptake from soil and transportation of sulfate in plants. Expression profiles of SbSULTR genes in sorghum under drought condition were investigated in this study. Gene expression analyses showed that five SbSULTR genes in leaves and six in roots were up-regulated while three SbSULTR genes in leaves and two genes in roots were down-regulated. Approximately, seven fold up-regulation was detected in SbSULTR4 in leaves. Consequently, results revealed that SULTR genes were mainly up-regulated under drought conditions, and sulfur containing compounds got employed in sorghum to battle drought.




References

  • Akbudak M, Filiz E, Kontbay K (2018) Genome-wide identification and cadmium induced expression profiling of sulfate transporter (SULTR) genes in sorghum (Sorghum bicolor L.) Biometals 31: 91-105 doi: 10.1007/s10534-017-0071-5.
  • Boaretto L, Carvalho G, Borgo L, Creste S, Landell M, Mazzafera P, Azevedo R (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes Plant Physiology and Biochemistry 74: 165-175 doi: 10.1016/j.plaphy.2013.11.016.
  • Bosabalidis A, Kofidis G (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars Plant Science 163: 375-379 doi: 10.1016/s0168-9452(02)00135-8.
  • Buchner P, Takahashi H, Hawkesford M (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport Journal of Experimental Botany 55: 1765-1773 doi: 10.1093/jxb/erh206.
  • Cao M, Wang Z, Wirtz M, Hell R, Oliver D, Xiang C (2013) SULTR3;1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana Plant Journal 73: 607-616 doi: 10.1111/tpj.12059.
  • Capaldi F, Gratao P, Reis A, Lima L, Azevedo R (2015) Sulfur Metabolism and Stress Defense Responses in Plants Tropical Plant Biology 8: 60-73 doi: 10.1007/s12042-015-9152-1.
  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress Plant Signal Behav 8: e23681 doi: 10.4161/psb.23681.
  • Davidian J, Kopriva S (2010) Regulation of Sulfate Uptake and Assimilation-the Same or Not the Same? Molecular Plant 3: 314-325 doi: 10.1093/mp/ssq001.
  • Ernst L, Goodger JQ, Alvarez S, Marsh EL, Berla B, Lockhart E, Jung J, Li P, Bohnert HJ, Schachtman DP (2010) Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots Journal of Experimental Botany 61: 3395-3405 doi: 10.1093/jxb/erq160.
  • Farooq M, Kobayashi N, Ito O, Wahid A, Serraj R (2010) Broader leaves result in better performance of indica rice under drought stress Journal of Plant Physiology 167: 1066-1075 doi: 10.1016/j.jplph.2010.03.003.
  • Fatma M, Khan MIR, Masood A, Khan NA (2013) Coordinate changes in assimilatory sulfate reduction are correlated to salt tolerance: Involvement of phytohormones Annual Review & Research in Biology. 3. 267-295.
  • Gallardo K, Courty P, Le Signor C, Wipf D, Vernoud V (2014) Sulfate transporters in the plant's response to drought and salinity: regulation and possible functions Frontiers in Plant Science 5 doi: 10.3389/fpls.2014.00580.
  • Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot 97: 479–495 doi.org/10.1093/aob/mcl006.
  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method Methods 25: 402-408 doi: 10.1006/meth.2001.1262.
  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Yamaya T, Takahashi H (2004) Induction of SULTR1;1 sulfate transporter in Arabidopsis roots involves protein phosphorylation/dephosphorylation circuit for transcriptional regulation Plant and Cell Physiology 45: 340-345 doi: 10.1093/pcp/pch029.
  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots Plant Journal 42: 305-314 doi: 10.1111/j.1365-313X.2005.02363.x.
  • Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples Plant Cell and Environment 29: 409-425 doi: 10.1111/j.1365-3040.2005.01476.x.
  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants Current Opinion in Plant Biology 14: 290-295 doi: 10.1016/j.pbi.2011.02.001.
  • Reddy PS, Reddy DS, Sivasakthi K, Bhatnagar-Mathur P, Vadez V, Sharma KK (2016) Evaluation of Sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Front Plant Sci 7 doi.org/10.3389/fpls.2016.00529.
  • Taiz L, Zeiger E (2010) Plant Physiology. 5th Edition, Sinauer Associates, Inc., Sunderland.
  • Takahashi H, Buchner P, Yoshimoto N, Hawkesford M, Shiu S (2012) Evolutionary relationships and functional diversity of plant sulfate transporters Frontiers in Plant Science 2 doi: 10.3389/fpls.2011.00119.
  • Tombuloglu H, Filiz E, Aydin M, Koc I (2017) Genome-wide identification and expression analysis of sulphate transporter (SULTR) genes under sulfur deficiency in Brachypodium distachyon Journal of Plant Biochemistry and Biotechnology 26: 263-273 doi: 10.1007/s13562-016-0388-0.
  • Wilkinson S, Davies W (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants Plant Cell and Environment 25: 195-210 doi: 10.1046/j.0016-8025.2001.00824.x.

Sorgum (Sorghum bicolor L.)’da sülfat taşıyıcı (SULTR) genlerin kuraklık stresi altında ifadelerinin belirlenmesi

Year 2018, , 67 - 70, 01.04.2018
https://doi.org/10.29136/mediterranean.393096

Abstract

Küresel
ısınmadan kaynaklanan iklim değişikleri nedeniyle kuraklık, özellikle son 20
yılda tarımsal üretimi kısıtlayan en önemli problem haline gelmiştir.
Bitkilerin su yetersizliği şartlarına uyum sağlamalarına imkân sağlayacak
mekanizmaların anlaşılması, kuraklık nedeniyle meydana gelen verim kayıplarına
çözüm bulunması için oldukça önemlidir. Kükürt ve kükürt içeren bileşikler,
bitkilerin kuraklık dâhil pek çok stres koşuluyla mücadele etmesinde çeşitli fonksiyonlara
sahiptirler.
Arabidopsis thaliana’ da
12 adet sülfat (SO
4-2) taşıyıcı (SULTR) gen
tanımlanmış olup, bu genler kodladıkları proteinlerin aminoasit dizilerindeki benzerlikler
göz önüne alınarak dört gruba ayrılmışlardır. SULTR proteinleri bitkilerde sülfatın
topraktan alınmasında ve bitki içerisinde taşınmasında çeşitli görevler üstlenmektedirler.
Bu çalışmada sorgum (
Sorghum bicolor
L.) SULTR genlerinin (
SbSULTR)
kuraklık şartlarındaki ifadeleri incelenmiştir. Yapılan gen ifade analizleri, kuraklık
stresi altında yapraklarda beş, köklerde ise altı
SbSULTR geninin ifadesindeki artışa karşın, yapraklarda üç,
köklerde ise iki
SbSULTR geninin
ifadesinin azaldığını göstermiştir.
SbSULTR4
geninin yapraklardaki ifadesinde yaklaşık yedi katlık bir artış tespit
edilmiştir. Elde edilen sonuçlar, kuraklık koşulları altında
SbSULTR genlerinin ifadesinin büyük
çoğunlukla arttığına ve sülfür içeren bileşiklerin sorgumun kuraklık ile
mücadelesinde görev aldığına işaret etmektedir.

References

  • Akbudak M, Filiz E, Kontbay K (2018) Genome-wide identification and cadmium induced expression profiling of sulfate transporter (SULTR) genes in sorghum (Sorghum bicolor L.) Biometals 31: 91-105 doi: 10.1007/s10534-017-0071-5.
  • Boaretto L, Carvalho G, Borgo L, Creste S, Landell M, Mazzafera P, Azevedo R (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes Plant Physiology and Biochemistry 74: 165-175 doi: 10.1016/j.plaphy.2013.11.016.
  • Bosabalidis A, Kofidis G (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars Plant Science 163: 375-379 doi: 10.1016/s0168-9452(02)00135-8.
  • Buchner P, Takahashi H, Hawkesford M (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport Journal of Experimental Botany 55: 1765-1773 doi: 10.1093/jxb/erh206.
  • Cao M, Wang Z, Wirtz M, Hell R, Oliver D, Xiang C (2013) SULTR3;1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana Plant Journal 73: 607-616 doi: 10.1111/tpj.12059.
  • Capaldi F, Gratao P, Reis A, Lima L, Azevedo R (2015) Sulfur Metabolism and Stress Defense Responses in Plants Tropical Plant Biology 8: 60-73 doi: 10.1007/s12042-015-9152-1.
  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress Plant Signal Behav 8: e23681 doi: 10.4161/psb.23681.
  • Davidian J, Kopriva S (2010) Regulation of Sulfate Uptake and Assimilation-the Same or Not the Same? Molecular Plant 3: 314-325 doi: 10.1093/mp/ssq001.
  • Ernst L, Goodger JQ, Alvarez S, Marsh EL, Berla B, Lockhart E, Jung J, Li P, Bohnert HJ, Schachtman DP (2010) Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots Journal of Experimental Botany 61: 3395-3405 doi: 10.1093/jxb/erq160.
  • Farooq M, Kobayashi N, Ito O, Wahid A, Serraj R (2010) Broader leaves result in better performance of indica rice under drought stress Journal of Plant Physiology 167: 1066-1075 doi: 10.1016/j.jplph.2010.03.003.
  • Fatma M, Khan MIR, Masood A, Khan NA (2013) Coordinate changes in assimilatory sulfate reduction are correlated to salt tolerance: Involvement of phytohormones Annual Review & Research in Biology. 3. 267-295.
  • Gallardo K, Courty P, Le Signor C, Wipf D, Vernoud V (2014) Sulfate transporters in the plant's response to drought and salinity: regulation and possible functions Frontiers in Plant Science 5 doi: 10.3389/fpls.2014.00580.
  • Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot 97: 479–495 doi.org/10.1093/aob/mcl006.
  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method Methods 25: 402-408 doi: 10.1006/meth.2001.1262.
  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Yamaya T, Takahashi H (2004) Induction of SULTR1;1 sulfate transporter in Arabidopsis roots involves protein phosphorylation/dephosphorylation circuit for transcriptional regulation Plant and Cell Physiology 45: 340-345 doi: 10.1093/pcp/pch029.
  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots Plant Journal 42: 305-314 doi: 10.1111/j.1365-313X.2005.02363.x.
  • Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples Plant Cell and Environment 29: 409-425 doi: 10.1111/j.1365-3040.2005.01476.x.
  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants Current Opinion in Plant Biology 14: 290-295 doi: 10.1016/j.pbi.2011.02.001.
  • Reddy PS, Reddy DS, Sivasakthi K, Bhatnagar-Mathur P, Vadez V, Sharma KK (2016) Evaluation of Sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Front Plant Sci 7 doi.org/10.3389/fpls.2016.00529.
  • Taiz L, Zeiger E (2010) Plant Physiology. 5th Edition, Sinauer Associates, Inc., Sunderland.
  • Takahashi H, Buchner P, Yoshimoto N, Hawkesford M, Shiu S (2012) Evolutionary relationships and functional diversity of plant sulfate transporters Frontiers in Plant Science 2 doi: 10.3389/fpls.2011.00119.
  • Tombuloglu H, Filiz E, Aydin M, Koc I (2017) Genome-wide identification and expression analysis of sulphate transporter (SULTR) genes under sulfur deficiency in Brachypodium distachyon Journal of Plant Biochemistry and Biotechnology 26: 263-273 doi: 10.1007/s13562-016-0388-0.
  • Wilkinson S, Davies W (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants Plant Cell and Environment 25: 195-210 doi: 10.1046/j.0016-8025.2001.00824.x.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

M. Aydın Akbudak 0000-0002-1397-4678

Publication Date April 1, 2018
Submission Date February 9, 2018
Published in Issue Year 2018

Cite

APA Akbudak, M. A. (2018). Sorgum (Sorghum bicolor L.)’da sülfat taşıyıcı (SULTR) genlerin kuraklık stresi altında ifadelerinin belirlenmesi. Mediterranean Agricultural Sciences, 31(1), 67-70. https://doi.org/10.29136/mediterranean.393096
AMA Akbudak MA. Sorgum (Sorghum bicolor L.)’da sülfat taşıyıcı (SULTR) genlerin kuraklık stresi altında ifadelerinin belirlenmesi. Mediterranean Agricultural Sciences. April 2018;31(1):67-70. doi:10.29136/mediterranean.393096
Chicago Akbudak, M. Aydın. “Sorgum (Sorghum Bicolor L.)’da sülfat taşıyıcı (SULTR) Genlerin kuraklık Stresi altında Ifadelerinin Belirlenmesi”. Mediterranean Agricultural Sciences 31, no. 1 (April 2018): 67-70. https://doi.org/10.29136/mediterranean.393096.
EndNote Akbudak MA (April 1, 2018) Sorgum (Sorghum bicolor L.)’da sülfat taşıyıcı (SULTR) genlerin kuraklık stresi altında ifadelerinin belirlenmesi. Mediterranean Agricultural Sciences 31 1 67–70.
IEEE M. A. Akbudak, “Sorgum (Sorghum bicolor L.)’da sülfat taşıyıcı (SULTR) genlerin kuraklık stresi altında ifadelerinin belirlenmesi”, Mediterranean Agricultural Sciences, vol. 31, no. 1, pp. 67–70, 2018, doi: 10.29136/mediterranean.393096.
ISNAD Akbudak, M. Aydın. “Sorgum (Sorghum Bicolor L.)’da sülfat taşıyıcı (SULTR) Genlerin kuraklık Stresi altında Ifadelerinin Belirlenmesi”. Mediterranean Agricultural Sciences 31/1 (April 2018), 67-70. https://doi.org/10.29136/mediterranean.393096.
JAMA Akbudak MA. Sorgum (Sorghum bicolor L.)’da sülfat taşıyıcı (SULTR) genlerin kuraklık stresi altında ifadelerinin belirlenmesi. Mediterranean Agricultural Sciences. 2018;31:67–70.
MLA Akbudak, M. Aydın. “Sorgum (Sorghum Bicolor L.)’da sülfat taşıyıcı (SULTR) Genlerin kuraklık Stresi altında Ifadelerinin Belirlenmesi”. Mediterranean Agricultural Sciences, vol. 31, no. 1, 2018, pp. 67-70, doi:10.29136/mediterranean.393096.
Vancouver Akbudak MA. Sorgum (Sorghum bicolor L.)’da sülfat taşıyıcı (SULTR) genlerin kuraklık stresi altında ifadelerinin belirlenmesi. Mediterranean Agricultural Sciences. 2018;31(1):67-70.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.