Research Article
BibTex RIS Cite

Yerel, yabani ve ticari kabakgillerde külleme hastalık etmenlerinin belirlenmesi, tanılanması ve dayanıklılığın araştırılması

Year 2020, , 207 - 214, 01.08.2020
https://doi.org/10.29136/mediterranean.711786

Abstract

Kabakgiller Türkiye’de ve dünyada yoğun üretimi yapılan bir sebze grubudur. Külleme hastalıkları, kabakgil üretiminde ekonomik kayıplara neden olan hastalıkların başında gelmektedir. Günümüzde kabakgil külleme etmenleri; Podosphaera xanthii ve Golovinomyces cichoracearum türlerine karşı dayanıklı çeşitler konusunda yapılmış çalışmalar bulunmamaktadır. Bu çalışmanın amacı, Batı Akdeniz ile Doğu Akdeniz arasında yetişen yerel, yabani ve ticari su kabağı, acur, kavun, karpuz, hıyar, sakız kabağı, bal kabağı gibi çeşitli kabakgillerin genetik dayanıklılığını ortaya koymaktır. Çalışmada kabakgillerde verim kaybına neden olan, külleme hastalık etmenleri Podosphaera xanthii ve Golovinomyces cichoracearum türleri hassas hıyar çeşidi (Baccara) üzerinde kültüre alınmıştır. Kültüre alınan külleme etmeni üzerinde yapılan morfolojik, mikroskobik ve moleküler çalışmalar sonucunda patojen Podosphaera xanthii olarak tanımlanmıştır. Hastalık etmeni P. xanthi ile inokule edilen toplam 34 yerel, yabani ve ticari kabakgil çeşidi inokulasyondan sonraki ilk 3 gün boyunca mikroskopta trypan blue, diamino benzidine ve 3,3'-dihexyloxacarbocynin iodide (DiOC6) boyama yöntemleriyle incelenmiştir. Sonraki 7., 14. ve 21. günlerde bitkiler üzerindeki hastalık gelişimleri skorlanarak dayanıklı ve hassas kabakgiller bulunmuştur. Yapılan patojeniste testleri sonucunda VT18, Meltem F1, Poyraz F1 ve 348 ticari hıyar çeşitleri ile Adana kabak, Kaledran hıyar 1 ve Kaledran hıyar 2 yerel çeşitleri en dayanıklı kabakgiller olarak bulunmuştur. Çalışmada Kaledran kavun 2 yerel çeşidi P. xanthii’ye karşı en hassas bitki olarak belirlenmiştir. Çalışmalarda, külleme etmeni P. xanthii’ye karşı dayanıklı olarak bulunan yerel, yabani ve ticari genotipler gelecekteki ıslah çalışmaları için dayanıklılık kaynağı olarak kullanılabilecektir.

Supporting Institution

Akdeniz Üniversitesi Bilimsel Projeler Koordinasyon Birimi

Project Number

FYL-2017-2146

References

  • Adam L, Somerville SC (1996) Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. The Plant Journal 9: 341-356.
  • Adam L, Ellwood S, Wilson I, Saenz G, Xiao S, Oliver RP, Turner JG, Somerville S (1999) Comparison of Erysiphe cichoracearum and E. cruciferarum and a survey of 360 Arabidopsis thaliana accessions for resistance to these two powdery mildew pathogens. Molecular Plant-Microbe Interactions 12: 1031-1043.
  • Blancard D, Pitrat M, Jourdain F (1989) Etude de la sporulation de Pseudoperonospora cubensis (Berk, et Curt.) Rost, sur cotylédons de melon; application à la recherche de variétés résistantes. Phytopathologia Mediterranea 28: 169-175.
  • Braun U, Shishkoff N, Takamatsu S (2001) Phylogeny of Podosphaera sect. Sphaerotheca subsect Magnicellulatae (Sphaerotheca fuliginea auct. s.lat.) inferred from rDNA ITS sequences a taxonomic interpretation. Schlechtendalia 7: 45-52.
  • Cohen RA (1993) A leaf disk assay for detection of resistance of melons to Sphaerotheca fuliginea race 1. Phytopathology 54: 587-591.
  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
  • Duckett JG, Read DJ (1991) The use of the fluorescent dye 3,3’dihexyloxacarbocyanin iodide for selective staining of ascomycete fungi associated with liverworth rhizoids and ericoid mycorrhizal roots. New Phytologist 118: 250-272.
  • Epinat C, Pitrat M, Bertrand F (1993) Genetic analysis of resistance of five melon lines to powdery mildews. Euphytica 65: 135-144.
  • FAO (2018) Food and Agricultural organization of the United Nations http://www.fao.org/statistics/en/. Accessed 08 June 2020.
  • Jeffrey C (2005) A new system of Cucurbitaceae. Botanicheskii Zhurnal 90: 332-335.
  • Kristkova C, Leveda A, Sedlakova B (2004) Virulence of Czech cucurbit powdery mildew isolates on Cucumis melo genotypes MR-1 and PI 124112. Scientia Horticulturae 99: 257-265.
  • McCreight JD, Pitrat M, Thomas CE, Kishaba AN, Bohn GW (1987) Powdery mildew resistance genes in muskmelon. Journal of the American Society for Horticultural Science 112: 156-160.
  • Miazzi M, Laguardia C, Faretra F (2011) Variation in Podosphaera xanthii on Cucurbits in Southern Italy. Journal of Phytopatology 159: 538-545.
  • Pavan S, Jacobsen, E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Molecular Breeding 25: 1-12.
  • Robinson RW, Decker-Walters DS (1997) Cucurbits. Wallingford: CAB International, New York.
  • Shulze-Lefert P, Vogel J (2000) Closing the ranks to attack by powdery mildew. Trends in Plant Science 5: 343-347.
  • Sitterly WR (1978) Powdery Mildews of Cucurbits. In; Spencer, DM, ed The Powdery Mildews, Academic Press, London.
  • Sowell GJr (1982) Population shift of Sphaerotheca fuliginea on musk melon. Journal of the American Society for Horticultural Science 112: 156-160.
  • Thordal-Christensen H, Zhang H, Wei ZY, Collinge DB (1997) Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley powdery mildew interaction. The Plant Journal 11: 1187-1194.
  • Van Schie C, Takken FL (2014) Susceptibility genes 101: How to be a good host. Annual Review of Phytopathology 52: 551-81.
  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315-322 In: PCR Protocols: A Guide to Methods and Applications, eds. Innis, M.A., D.H. Gelfand, J.J. Sninsky, and T.J. White. Academic Press, Inc., New York.
  • Xiao S, Ellwood S, Findlay K, Oliver RP, Turner JG (1997) Characterisation of three loci controlling resistance of Arabidopsis thaliana accession Ms-0 to two powdery mildew diseases. The Plant Journal 12: 757-768.
  • Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291: 118-120.
  • Zhou SJ, Jing Z, Shi JL (2013) Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus. Genetics and Molecular Research 12: 6565-6578.
  • Zitter TA, Hopkins DL, Thomas CE (1996) Compendium of cucurbit diseases. APS Press, St. Paul.

Determination and identification of powdery mildews on domestic, wild and commercial cucurbits

Year 2020, , 207 - 214, 01.08.2020
https://doi.org/10.29136/mediterranean.711786

Abstract

Cucurbits are crucial vegetable groups significantly produce in Turkey and world-wide. Powdery mildew (PM) pathogens cause economic losses in cucurbits production areas. There are not studies on resistant cucurbit varieties against to PM disease caused byPodosphaera xanthii and Golovinomyces cichoracearum. The aim of this study is to identify genetically resistant plants from landraces, wild and commercial cucurbits such as pumpkin, melon, watermelon, cucumber collected between West and East Mediterranean regions of Turkey. The PM agents were maintained on susceptible cucumber variety, Baccara. The maintained PM pathogen is identified as Podosphaera xanthii in microscopic, morphological and molecular studies. A total of 34 local, wild and commercial cucurbit species were inoculated with P. xanthi. The inoculated cucurbit plants were examined by trypan blue, diamino benzidine and 3,3'-dihexyloxacarbocynin iodide (DiOC6) staining methods during first 3 days post inoculation (dpi). On the other 7th, 14th and 21st dpi, disease developments were scored according disease scale, susceptible and resistant cucurbits’ genotypes were found. The pathogenicity test results revealed that VT18, Meltem F1, Poyraz F1 and 348 commercial cucumber varieties and Adana courgette, Kaledran cucumber 1 and Kaledran cucumber 2 landraces were the most resistant cucurbit genotypes. However, these pathogenicity tests have also resulted Kaledran melon 2 was the most susceptible landrace genotype against P. xanthii. In future studies, these resistant local, wild, and commercial genotypes will be able to use against destructive PM pathogens as sources of resistance.

Project Number

FYL-2017-2146

References

  • Adam L, Somerville SC (1996) Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. The Plant Journal 9: 341-356.
  • Adam L, Ellwood S, Wilson I, Saenz G, Xiao S, Oliver RP, Turner JG, Somerville S (1999) Comparison of Erysiphe cichoracearum and E. cruciferarum and a survey of 360 Arabidopsis thaliana accessions for resistance to these two powdery mildew pathogens. Molecular Plant-Microbe Interactions 12: 1031-1043.
  • Blancard D, Pitrat M, Jourdain F (1989) Etude de la sporulation de Pseudoperonospora cubensis (Berk, et Curt.) Rost, sur cotylédons de melon; application à la recherche de variétés résistantes. Phytopathologia Mediterranea 28: 169-175.
  • Braun U, Shishkoff N, Takamatsu S (2001) Phylogeny of Podosphaera sect. Sphaerotheca subsect Magnicellulatae (Sphaerotheca fuliginea auct. s.lat.) inferred from rDNA ITS sequences a taxonomic interpretation. Schlechtendalia 7: 45-52.
  • Cohen RA (1993) A leaf disk assay for detection of resistance of melons to Sphaerotheca fuliginea race 1. Phytopathology 54: 587-591.
  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
  • Duckett JG, Read DJ (1991) The use of the fluorescent dye 3,3’dihexyloxacarbocyanin iodide for selective staining of ascomycete fungi associated with liverworth rhizoids and ericoid mycorrhizal roots. New Phytologist 118: 250-272.
  • Epinat C, Pitrat M, Bertrand F (1993) Genetic analysis of resistance of five melon lines to powdery mildews. Euphytica 65: 135-144.
  • FAO (2018) Food and Agricultural organization of the United Nations http://www.fao.org/statistics/en/. Accessed 08 June 2020.
  • Jeffrey C (2005) A new system of Cucurbitaceae. Botanicheskii Zhurnal 90: 332-335.
  • Kristkova C, Leveda A, Sedlakova B (2004) Virulence of Czech cucurbit powdery mildew isolates on Cucumis melo genotypes MR-1 and PI 124112. Scientia Horticulturae 99: 257-265.
  • McCreight JD, Pitrat M, Thomas CE, Kishaba AN, Bohn GW (1987) Powdery mildew resistance genes in muskmelon. Journal of the American Society for Horticultural Science 112: 156-160.
  • Miazzi M, Laguardia C, Faretra F (2011) Variation in Podosphaera xanthii on Cucurbits in Southern Italy. Journal of Phytopatology 159: 538-545.
  • Pavan S, Jacobsen, E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Molecular Breeding 25: 1-12.
  • Robinson RW, Decker-Walters DS (1997) Cucurbits. Wallingford: CAB International, New York.
  • Shulze-Lefert P, Vogel J (2000) Closing the ranks to attack by powdery mildew. Trends in Plant Science 5: 343-347.
  • Sitterly WR (1978) Powdery Mildews of Cucurbits. In; Spencer, DM, ed The Powdery Mildews, Academic Press, London.
  • Sowell GJr (1982) Population shift of Sphaerotheca fuliginea on musk melon. Journal of the American Society for Horticultural Science 112: 156-160.
  • Thordal-Christensen H, Zhang H, Wei ZY, Collinge DB (1997) Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley powdery mildew interaction. The Plant Journal 11: 1187-1194.
  • Van Schie C, Takken FL (2014) Susceptibility genes 101: How to be a good host. Annual Review of Phytopathology 52: 551-81.
  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315-322 In: PCR Protocols: A Guide to Methods and Applications, eds. Innis, M.A., D.H. Gelfand, J.J. Sninsky, and T.J. White. Academic Press, Inc., New York.
  • Xiao S, Ellwood S, Findlay K, Oliver RP, Turner JG (1997) Characterisation of three loci controlling resistance of Arabidopsis thaliana accession Ms-0 to two powdery mildew diseases. The Plant Journal 12: 757-768.
  • Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291: 118-120.
  • Zhou SJ, Jing Z, Shi JL (2013) Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus. Genetics and Molecular Research 12: 6565-6578.
  • Zitter TA, Hopkins DL, Thomas CE (1996) Compendium of cucurbit diseases. APS Press, St. Paul.
There are 25 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Mustafa Yüceson This is me 0000-0002-2928-5690

Mümin Tek This is me 0000-0002-4795-1626

Özer Çalış 0000-0002-7219-1219

Project Number FYL-2017-2146
Publication Date August 1, 2020
Submission Date March 30, 2020
Published in Issue Year 2020

Cite

APA Yüceson, M., Tek, M., & Çalış, Ö. (2020). Determination and identification of powdery mildews on domestic, wild and commercial cucurbits. Mediterranean Agricultural Sciences, 33(2), 207-214. https://doi.org/10.29136/mediterranean.711786
AMA Yüceson M, Tek M, Çalış Ö. Determination and identification of powdery mildews on domestic, wild and commercial cucurbits. Mediterranean Agricultural Sciences. August 2020;33(2):207-214. doi:10.29136/mediterranean.711786
Chicago Yüceson, Mustafa, Mümin Tek, and Özer Çalış. “Determination and Identification of Powdery Mildews on Domestic, Wild and Commercial Cucurbits”. Mediterranean Agricultural Sciences 33, no. 2 (August 2020): 207-14. https://doi.org/10.29136/mediterranean.711786.
EndNote Yüceson M, Tek M, Çalış Ö (August 1, 2020) Determination and identification of powdery mildews on domestic, wild and commercial cucurbits. Mediterranean Agricultural Sciences 33 2 207–214.
IEEE M. Yüceson, M. Tek, and Ö. Çalış, “Determination and identification of powdery mildews on domestic, wild and commercial cucurbits”, Mediterranean Agricultural Sciences, vol. 33, no. 2, pp. 207–214, 2020, doi: 10.29136/mediterranean.711786.
ISNAD Yüceson, Mustafa et al. “Determination and Identification of Powdery Mildews on Domestic, Wild and Commercial Cucurbits”. Mediterranean Agricultural Sciences 33/2 (August 2020), 207-214. https://doi.org/10.29136/mediterranean.711786.
JAMA Yüceson M, Tek M, Çalış Ö. Determination and identification of powdery mildews on domestic, wild and commercial cucurbits. Mediterranean Agricultural Sciences. 2020;33:207–214.
MLA Yüceson, Mustafa et al. “Determination and Identification of Powdery Mildews on Domestic, Wild and Commercial Cucurbits”. Mediterranean Agricultural Sciences, vol. 33, no. 2, 2020, pp. 207-14, doi:10.29136/mediterranean.711786.
Vancouver Yüceson M, Tek M, Çalış Ö. Determination and identification of powdery mildews on domestic, wild and commercial cucurbits. Mediterranean Agricultural Sciences. 2020;33(2):207-14.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.