Araştırma Makalesi
BibTex RIS Kaynak Göster

Expression patterns of ROS responsive genes on B-stressed canola (Brassica napus ssp. oleifera L.) following selenium treatment

Yıl 2019, Cilt: 32 Sayı: 1, 35 - 41, 01.04.2019
https://doi.org/10.29136/mediterranean.500611

Öz

Though mitigating effect of selenium (Se) on various abiotic stresses is apparent, the knowledge on B-stress is very scant. Therefore, this work attempted to reveal its effects on B-stressed canola (Brassica napus ssp. oleifera L.) plants. In the present study, foliar gene expression and amounts of major antioxidant enzymes were investigated under different concentrations of individual (B or Se) and combined (B + Se) applications. The individual applications (per L) included 1.5 g B, 3 g B, 3 mg Se and 6 mg Se, while the combined applications were 1.5 g B+3 mg Se, 1.5 g B+6 mg Se, 3 g B+3 mg Se and 3 g B+6 mg Se. Under the given treatments, APX, CAT, SOD, POD and GR genes were mostly downregulated while some also showed upregulation such as APX (1.5 g B+6 mg Se and 3 g B+6 mg Se), SOD (1.5 g B+3 mg Se), CAT (3 g B, 3 mg Se and 3 g B+6 mg Se) and POD (1.5 g B). Assaying also implicated that beneficial effect of Se might be associated with the presence of stressor; otherwise, Se itself might induce the antioxidant mechanism as stressor. This work provides the results of individual and combined effects of B and Se applications on antioxidant gene expressions and protein activities in canola.




Kaynakça

  • Ali B, Gill RA, Yang S, Gill MB, Farooq MA, Liu D, Daud MK, Ali S, Zhou W (2015) Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus. L PLoS One 10:e0123328 doi:10.1371/journal.pone.0123328.
  • Ayvaz M, Avci MK, Yamaner C, Koyuncu M, Guven A, Fagerstedt K (2013) Does excess boron affect the malondialdehyde levels of potato cultivars? Eurasia J. Biosci. 7.
  • Belokobylsky AI, Ginturi EI, Kuchava NE, Kirkesali EI, Frontasyeva MV, Pavlov SS, Aksenova NG (2004) Accumulation of selenium and chromium in the growth dynamics of spirulina platensis. J Radioanal Nucl. Chem. 259: 65-68.
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7; 72(1-2): 248-54.
  • Bodnar M, Konieczka P, Namiesnik J (2012) The properties, functions, and use of selenium compounds in living organisms. J .Environ. Sci. Health C Environ Carcinog Ecotoxicol Rev 30: 225-252. doi:10.1080/10590501.2012.705164.
  • Camacho-Cristobal JJ, Rexach J, Gonzalez-Fontes A (2008) Boron in plants: deficiency and toxicity. J Integr Plant Biol 50: 1247-1255. doi:10.1111/j.1744-7909.2008.00742.x.
  • Cartes P, Jara AA, Pinilla L, Rosas A, Mora ML (2010) Selenium improves the antioxidant ability against aluminium‐induced oxidative stress in ryegrass roots. Ann. Appl. Biol. 156: 297-307.
  • Chen T, Zhang B (2015) Measurements of Proline and Malondialdehyde Content and Antioxidant Enzyme Activities in Leaves of Drought Stressed Cotton. Plant Cell Physiol.
  • Chu J, Yao X, Zhang Z (2010) Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol. Trace Elem. Res. 136: 55-363. doi:10.1007/s12011-009-8542-3.
  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci 2: 53.
  • Diao M, Ma L, Wang J, Cui J, Fu A, Liu HY (2014) Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. J. Plant Growth Regul. 33: 671-682.
  • Djanaguiraman M, Prasad PV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol. Biochem. 48: 999-1007. doi:10.1016/j.plaphy.2010.09.009.
  • Duan BH, Liu XW, Jiao W, Zhao ZQ, Hu CX (2014) Alleviation of Boron Toxicity on Rape Seedlings by Selenium. Sci. Agric. Sin. 47: 2126-2134.
  • El-Ramady H, Abdalla N, Taha HS, Alshaal T, El-Henawy A, Salah EDF, Elhawat N (2016) Selenium and nano-selenium in plant nutrition. Environ. Chem. Lett . 14: 123-147.
  • Feng R, Wei C, Tu S, Sun X (2009) Interactive effects of selenium and arsenic on their uptake by Pteris vittata L. under hydroponic conditions. Environ. Exp. Bot. 65: 363-368.
  • Feng R, Wei C, Tu S, Tang S, Wu F (2011) Detoxification of antimony by selenium and their interaction in paddy rice under hydroponic conditions. Microchem. J 97: 57-61.
  • Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87.
  • Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J. Plant Physiol. 165: 833-844.
  • Fletcher RS, Herrmann D, Mullen JL, Li Q, Schrider DR, Price N, Lin J, Grogan K, Kern A, McKay JK (2016) Identification of polymorphisms associated with drought adaptation QTL in Brassica napus by resequencing. G3-Genes Genom Genet. 1: g3-115.
  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 155: 93-100. doi:10.1104/pp.110.166181.
  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EA (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol. 173: 517-525. doi:10.1111/j.1469-8137.2006.01943.x.
  • Gupta M, Gupta S (2016) An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front. Plant Sci. 7: 2074. doi:10.3389/fpls.2016.02074.
  • Hajiboland R, Rahmat S, Aliasgharzad N, Hartikainen H (2015) Selenium-induced enhancement in carbohydrate metabolism in nodulated alfalfa (Medicago sativa L.) as related to the glutathione redox state. Soil Sci. Plant Nutr. 61: 676-687.
  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol. Trace Elem. Res. 143: 1758-1776. doi:10.1007/s12011-011-8998-9.
  • Hawrylak-Nowak B, Matraszek R, Pogorzelec M (2015) The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol. Plant 37: 41.
  • Iqbal M, Hussain I, Liaqat H, Ashraf MA, Rasheed R, Rehman AU (2015) Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant. Physiol. Biochem. 94: 95-103. doi:10.1016/j.plaphy.2015.05.012.
  • Jiang C, Zu C, Shen J, Shao F, Li T (2015) Effects of selenium on the growth and photosynthetic characteristics of flue-cured tobacco (Nicotiana tabacum L.). Acta Soc. Bot. Pol. 84.
  • Kumar M, Bijo AJ, Baghel RS, Reddy CR, Jha B (2012) Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol. Biochem. 51: 129-138 doi:10.1016/j.plaphy.2011.10.016.
  • Landi M, Degl’Innocenti E, Pardossi A, Guidi L (2012) Antioxidant and photosynthetic responses in plants under boron toxicity: a review. Am. J. Agric. Biol. Sci. 7: 255-270.
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25: 402-408.
  • Malik JA, Goel S, Kaur N, Sharma S, Singh I, Nayyar H (2012) Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ. Exp. Bot. 77: 242-248.
  • Metwally AM, Radi AA, El-Shazoly RM, Hamada AM (2018) The role of calcium, silicon and salicylic acid treatment in protection of canola plants against boron toxicity stress. J. Plant Res. doi:10.1007/s10265-018-1008-y.
  • Mroczek-Zdyrska M, Wojcik M (2012) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol. Trace Elem. Res. 147: 320-328 doi:10.1007/s12011-011-9292-6.
  • Murshed R, Lopez-Lauri F, Sallanon H (2008) Microplate quantification of enzymes of the plant ascorbate-glutathione cycle. Anal. Biochem. 383: 320-322. doi:10.1016/j.ab.2008.07.020.
  • Naz FS, Yusuf M, Khan TA, Fariduddin Q, Ahmad A (2015) Low level of selenium increases the efficacy of 24-epibrassinolide through altered physiological and biochemical traits of Brassica juncea plants. Food Chem. 185: 441-448 doi:10.1016/j.foodchem.2015.04.016.
  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351-358.
  • Pedrero Z, Madrid Y, Hartikainen H, Cámara C (2008) Protective Effect of Selenium in Broccoli (Brassica oleracea) Plants Subjected to Cadmium Exposure. J. Agric. Food Chem. 56: 266-271.
  • Pilon-Smits EA (2015) Selenium in plants In Progress in botany. Springer, Cham: 93-107.
  • Princi MP, Lupini A, Araniti F, Longo C, Mauceri A, Sunseri F, Abenavoli MR (2015) Boron Toxicity and Tolerance in Plants: Recent Advances and Future Perspectives. Plant Met. Interact. 115-147.
  • Pukacka S, Ratajczak E, Kalemba E (2011) The protective role of selenium in recalcitrant Acer saccharium L. seeds subjected to desiccation. J. Plant Physiol. 168: 220-225 doi:10.1016/j.jplph.2010.07.021.
  • Qing X et al. (2015) Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves. Ecotoxicol Environ. Saf 114: 179-189. doi:10.1016/j.ecoenv.2015.01.026.
  • Reid R, Fitzpatrick K (2009) Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiol. 151: 413-420. doi:10.1104/pp.109.141069.
  • Reid RJ (2013) Boron toxicity and tolerance in crop plants. In Crop Improvement Under Adverse Conditions. Springer, New York, NY. Roessner U, Patterson JH, Forbes MG, Fincher GB, Langridge P, Bacic A (2006) An investigation of boron toxicity in barley using metabolomics. Plant Physiol. 142: 1087-1101 doi:10.1104/pp.106.084053.
  • Saidi I, Chtourou Y, Djebali W (2014) Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J. Plant Physiol. 171: 85-91. doi:10.1016/j.jplph.2013.09.024.
  • Shanker K, Mishra S, Srivastava S, Srivastava R, Dass S, Prakash S, Srivastava MM (1996) Study of mercury-selenium (Hg-Se) interactions and their impact on Hg uptake by the radish (Raphanus sativus) plant. Food Chem. Toxicol. 34: 883-886.
  • Sheoran S, Thakur V, Narwal S, Turan R, Mamrutha HM, Singh V, Sharma I (2015) Differential activity and expression profile of antioxidant enzymes and physiological changes in wheat (Triticum aestivum L.) under drought. Appl. Biochem. Biotechnol. 177: 1282-1298.
  • Shireen F et al. (2018) Boron: Functions and Approaches to Enhance Its Availability in Plants for Sustainable Agriculture Int. J. Mol. Sci. 19. doi:10.3390/ijms19071856.
  • Silva GM, Vogel C (2016) Quantifying gene expression: the importance of being subtle. Mol Syst Biol 12: 885. doi:10.15252/msb.20167325.
  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth. Res. 86: 373-389. doi:10.1007/s11120-005-5222-9.
  • Sun HW, Ha J, Liang SX, Kang WJ (2010) Protective role of selenium on garlic growth under cadmium stress Commun. Soil. Sci. Plant Anal. 41: 1195-1204.
  • Sutton T et al. (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Sci. 318: 1446-1449. doi:10.1126/science.1146853.
  • Tang H et al. (2015) Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress. Environ. Sci. Pollut. Res. Int. 22: 9999-10008. doi:10.1007/s11356-015-4187-2.
  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13: 227-232. doi:10.1038/nrg3185.
  • Wang CQ (2011) Water‐stress mitigation by selenium in Trifolium repens L. J. Plant Nutr. Soil Sci. 174: 276-282.
  • Wang M, Wu C, Cheng Z, Meng H (2015) Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.). Front. Plant Sci. 6: 262. doi:10.3389/fpls.2015.00262.
  • Yang H, Liu J, Huang S, Guo T, Deng L, Hua W (2014) Selection and evaluation of novel reference genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in Brassica napus L. Gene 538: 113-122. doi:10.1016/j.gene.2013.12.057.
  • Yao X, Chu J, Wang G (2009) Effects of selenium on wheat seedlings under drought stress. Biol. Trace Elem. Res. 130: 283-290. doi:10.1007/s12011-009-8328-7.
  • Yao X, Chu J, Ba C (2010) Antioxidant responses of wheat seedlings to exogenous selenium supply under enhanced ultraviolet-B. Biol Trace Elem. Res. 136: 96-105. doi:10.1007/s12011-009-8520-9.
  • Yildirim K, Kaya Z (2017) Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.). Plant Physiol. Biochem. 115: 183-199. doi:10.1016/j.plaphy.2017.03.020.
  • Yoshinari A, Takano J (2017) Insights into the Mechanisms Underlying Boron Homeostasis in Plants. Front Plant Sci. 8: 1951 doi:10.3389/fpls.2017.01951.

Bor stresine maruz bırakılmış kanola bitkilerinde (Brassica napus ssp. oleifera L.) selenyum uygulaması sonrası ROS tepki genlerinin ifadelerinin belirlenmesi

Yıl 2019, Cilt: 32 Sayı: 1, 35 - 41, 01.04.2019
https://doi.org/10.29136/mediterranean.500611

Öz

Selenyumun (Se) çeşitli abiyotik stresler üzerindeki azaltıcı etkisi üzerine çalışmalar mevcut olmakla birlikte, B-stresi üzerindeki etkisi hakkında bilgi oldukça azdır. Bu nedenle, bu çalışmada B-stresine maruz bırakılmış kanola (Brassica napus ssp. oleifera L.) bitkileri üzerinde selenyumun etkilerinin ortaya konulması hedeflenmiştir. Ayrı ayrı (B veya Se) ve eş zamanlı (B + Se) uygulamaların belli başlı antioksidan enzimlerinin yapraklardaki gen ekspresyonu ve protein miktarları üzerine etkisi araştırılmıştır. Yapılan ayrı ayrı uygulamalar (litrede) 1.5 g B, 3 g B, 3 mg Se ve 6 mg Se'yi içerirken, eş zamanlı uygulamalar 1.5 g B + 3 mg Se, 1.5 g B + 6 mg Se, 3g B + 3 mg Se ve 3 g B + 6 mg Se içermektedir. Uygulamalar altında, APX, CAT, SOD, POD ve GR genlerinin çoğunlukla ifadeleri azalırken, APX (1.5 g B + 6 mg Se ve 3 g B + 6 mg Se), SOD (1.5 g B + 3 mg Se), CAT (3 g B, 3 mg Se ve 3 g B + 6 mg Se) ve POD (1.5 g B) gibi bazılarının ifadeleri ise artış göstermişlerdir. Bu çalışma Se' nin yararlı etkisinin ortamda herhangi bir stres etkeninin var olup-olmadığı ile ilişkili olabileceğini; aksi takdirde, Se' nin kendisinin doğrudan stres etkeni olarak antioksidan mekanizmayı indükleyebileceğini ortaya koymaktadır. Çalışmayla ayrıca, B ve Se uygulamalarının antioksidan gen ifadesi ve protein aktiviteleri üzerindeki eş zamanlı etkilerinin nasıl sonuçlandığı da gösterilmiştir.



Kaynakça

  • Ali B, Gill RA, Yang S, Gill MB, Farooq MA, Liu D, Daud MK, Ali S, Zhou W (2015) Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus. L PLoS One 10:e0123328 doi:10.1371/journal.pone.0123328.
  • Ayvaz M, Avci MK, Yamaner C, Koyuncu M, Guven A, Fagerstedt K (2013) Does excess boron affect the malondialdehyde levels of potato cultivars? Eurasia J. Biosci. 7.
  • Belokobylsky AI, Ginturi EI, Kuchava NE, Kirkesali EI, Frontasyeva MV, Pavlov SS, Aksenova NG (2004) Accumulation of selenium and chromium in the growth dynamics of spirulina platensis. J Radioanal Nucl. Chem. 259: 65-68.
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7; 72(1-2): 248-54.
  • Bodnar M, Konieczka P, Namiesnik J (2012) The properties, functions, and use of selenium compounds in living organisms. J .Environ. Sci. Health C Environ Carcinog Ecotoxicol Rev 30: 225-252. doi:10.1080/10590501.2012.705164.
  • Camacho-Cristobal JJ, Rexach J, Gonzalez-Fontes A (2008) Boron in plants: deficiency and toxicity. J Integr Plant Biol 50: 1247-1255. doi:10.1111/j.1744-7909.2008.00742.x.
  • Cartes P, Jara AA, Pinilla L, Rosas A, Mora ML (2010) Selenium improves the antioxidant ability against aluminium‐induced oxidative stress in ryegrass roots. Ann. Appl. Biol. 156: 297-307.
  • Chen T, Zhang B (2015) Measurements of Proline and Malondialdehyde Content and Antioxidant Enzyme Activities in Leaves of Drought Stressed Cotton. Plant Cell Physiol.
  • Chu J, Yao X, Zhang Z (2010) Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol. Trace Elem. Res. 136: 55-363. doi:10.1007/s12011-009-8542-3.
  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci 2: 53.
  • Diao M, Ma L, Wang J, Cui J, Fu A, Liu HY (2014) Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. J. Plant Growth Regul. 33: 671-682.
  • Djanaguiraman M, Prasad PV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol. Biochem. 48: 999-1007. doi:10.1016/j.plaphy.2010.09.009.
  • Duan BH, Liu XW, Jiao W, Zhao ZQ, Hu CX (2014) Alleviation of Boron Toxicity on Rape Seedlings by Selenium. Sci. Agric. Sin. 47: 2126-2134.
  • El-Ramady H, Abdalla N, Taha HS, Alshaal T, El-Henawy A, Salah EDF, Elhawat N (2016) Selenium and nano-selenium in plant nutrition. Environ. Chem. Lett . 14: 123-147.
  • Feng R, Wei C, Tu S, Sun X (2009) Interactive effects of selenium and arsenic on their uptake by Pteris vittata L. under hydroponic conditions. Environ. Exp. Bot. 65: 363-368.
  • Feng R, Wei C, Tu S, Tang S, Wu F (2011) Detoxification of antimony by selenium and their interaction in paddy rice under hydroponic conditions. Microchem. J 97: 57-61.
  • Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87.
  • Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J. Plant Physiol. 165: 833-844.
  • Fletcher RS, Herrmann D, Mullen JL, Li Q, Schrider DR, Price N, Lin J, Grogan K, Kern A, McKay JK (2016) Identification of polymorphisms associated with drought adaptation QTL in Brassica napus by resequencing. G3-Genes Genom Genet. 1: g3-115.
  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 155: 93-100. doi:10.1104/pp.110.166181.
  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EA (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol. 173: 517-525. doi:10.1111/j.1469-8137.2006.01943.x.
  • Gupta M, Gupta S (2016) An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front. Plant Sci. 7: 2074. doi:10.3389/fpls.2016.02074.
  • Hajiboland R, Rahmat S, Aliasgharzad N, Hartikainen H (2015) Selenium-induced enhancement in carbohydrate metabolism in nodulated alfalfa (Medicago sativa L.) as related to the glutathione redox state. Soil Sci. Plant Nutr. 61: 676-687.
  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol. Trace Elem. Res. 143: 1758-1776. doi:10.1007/s12011-011-8998-9.
  • Hawrylak-Nowak B, Matraszek R, Pogorzelec M (2015) The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol. Plant 37: 41.
  • Iqbal M, Hussain I, Liaqat H, Ashraf MA, Rasheed R, Rehman AU (2015) Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant. Physiol. Biochem. 94: 95-103. doi:10.1016/j.plaphy.2015.05.012.
  • Jiang C, Zu C, Shen J, Shao F, Li T (2015) Effects of selenium on the growth and photosynthetic characteristics of flue-cured tobacco (Nicotiana tabacum L.). Acta Soc. Bot. Pol. 84.
  • Kumar M, Bijo AJ, Baghel RS, Reddy CR, Jha B (2012) Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol. Biochem. 51: 129-138 doi:10.1016/j.plaphy.2011.10.016.
  • Landi M, Degl’Innocenti E, Pardossi A, Guidi L (2012) Antioxidant and photosynthetic responses in plants under boron toxicity: a review. Am. J. Agric. Biol. Sci. 7: 255-270.
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25: 402-408.
  • Malik JA, Goel S, Kaur N, Sharma S, Singh I, Nayyar H (2012) Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ. Exp. Bot. 77: 242-248.
  • Metwally AM, Radi AA, El-Shazoly RM, Hamada AM (2018) The role of calcium, silicon and salicylic acid treatment in protection of canola plants against boron toxicity stress. J. Plant Res. doi:10.1007/s10265-018-1008-y.
  • Mroczek-Zdyrska M, Wojcik M (2012) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol. Trace Elem. Res. 147: 320-328 doi:10.1007/s12011-011-9292-6.
  • Murshed R, Lopez-Lauri F, Sallanon H (2008) Microplate quantification of enzymes of the plant ascorbate-glutathione cycle. Anal. Biochem. 383: 320-322. doi:10.1016/j.ab.2008.07.020.
  • Naz FS, Yusuf M, Khan TA, Fariduddin Q, Ahmad A (2015) Low level of selenium increases the efficacy of 24-epibrassinolide through altered physiological and biochemical traits of Brassica juncea plants. Food Chem. 185: 441-448 doi:10.1016/j.foodchem.2015.04.016.
  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351-358.
  • Pedrero Z, Madrid Y, Hartikainen H, Cámara C (2008) Protective Effect of Selenium in Broccoli (Brassica oleracea) Plants Subjected to Cadmium Exposure. J. Agric. Food Chem. 56: 266-271.
  • Pilon-Smits EA (2015) Selenium in plants In Progress in botany. Springer, Cham: 93-107.
  • Princi MP, Lupini A, Araniti F, Longo C, Mauceri A, Sunseri F, Abenavoli MR (2015) Boron Toxicity and Tolerance in Plants: Recent Advances and Future Perspectives. Plant Met. Interact. 115-147.
  • Pukacka S, Ratajczak E, Kalemba E (2011) The protective role of selenium in recalcitrant Acer saccharium L. seeds subjected to desiccation. J. Plant Physiol. 168: 220-225 doi:10.1016/j.jplph.2010.07.021.
  • Qing X et al. (2015) Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves. Ecotoxicol Environ. Saf 114: 179-189. doi:10.1016/j.ecoenv.2015.01.026.
  • Reid R, Fitzpatrick K (2009) Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiol. 151: 413-420. doi:10.1104/pp.109.141069.
  • Reid RJ (2013) Boron toxicity and tolerance in crop plants. In Crop Improvement Under Adverse Conditions. Springer, New York, NY. Roessner U, Patterson JH, Forbes MG, Fincher GB, Langridge P, Bacic A (2006) An investigation of boron toxicity in barley using metabolomics. Plant Physiol. 142: 1087-1101 doi:10.1104/pp.106.084053.
  • Saidi I, Chtourou Y, Djebali W (2014) Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J. Plant Physiol. 171: 85-91. doi:10.1016/j.jplph.2013.09.024.
  • Shanker K, Mishra S, Srivastava S, Srivastava R, Dass S, Prakash S, Srivastava MM (1996) Study of mercury-selenium (Hg-Se) interactions and their impact on Hg uptake by the radish (Raphanus sativus) plant. Food Chem. Toxicol. 34: 883-886.
  • Sheoran S, Thakur V, Narwal S, Turan R, Mamrutha HM, Singh V, Sharma I (2015) Differential activity and expression profile of antioxidant enzymes and physiological changes in wheat (Triticum aestivum L.) under drought. Appl. Biochem. Biotechnol. 177: 1282-1298.
  • Shireen F et al. (2018) Boron: Functions and Approaches to Enhance Its Availability in Plants for Sustainable Agriculture Int. J. Mol. Sci. 19. doi:10.3390/ijms19071856.
  • Silva GM, Vogel C (2016) Quantifying gene expression: the importance of being subtle. Mol Syst Biol 12: 885. doi:10.15252/msb.20167325.
  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth. Res. 86: 373-389. doi:10.1007/s11120-005-5222-9.
  • Sun HW, Ha J, Liang SX, Kang WJ (2010) Protective role of selenium on garlic growth under cadmium stress Commun. Soil. Sci. Plant Anal. 41: 1195-1204.
  • Sutton T et al. (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Sci. 318: 1446-1449. doi:10.1126/science.1146853.
  • Tang H et al. (2015) Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress. Environ. Sci. Pollut. Res. Int. 22: 9999-10008. doi:10.1007/s11356-015-4187-2.
  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13: 227-232. doi:10.1038/nrg3185.
  • Wang CQ (2011) Water‐stress mitigation by selenium in Trifolium repens L. J. Plant Nutr. Soil Sci. 174: 276-282.
  • Wang M, Wu C, Cheng Z, Meng H (2015) Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.). Front. Plant Sci. 6: 262. doi:10.3389/fpls.2015.00262.
  • Yang H, Liu J, Huang S, Guo T, Deng L, Hua W (2014) Selection and evaluation of novel reference genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in Brassica napus L. Gene 538: 113-122. doi:10.1016/j.gene.2013.12.057.
  • Yao X, Chu J, Wang G (2009) Effects of selenium on wheat seedlings under drought stress. Biol. Trace Elem. Res. 130: 283-290. doi:10.1007/s12011-009-8328-7.
  • Yao X, Chu J, Ba C (2010) Antioxidant responses of wheat seedlings to exogenous selenium supply under enhanced ultraviolet-B. Biol Trace Elem. Res. 136: 96-105. doi:10.1007/s12011-009-8520-9.
  • Yildirim K, Kaya Z (2017) Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.). Plant Physiol. Biochem. 115: 183-199. doi:10.1016/j.plaphy.2017.03.020.
  • Yoshinari A, Takano J (2017) Insights into the Mechanisms Underlying Boron Homeostasis in Plants. Front Plant Sci. 8: 1951 doi:10.3389/fpls.2017.01951.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Melahat Ozge Özen Bu kişi benim

Seyda Kaya Bu kişi benim

Senem Uylaş Bu kişi benim

Durmus Çetin

Esin Arı

M. Aydın Akbudak 0000-0002-1397-4678

Yayımlanma Tarihi 1 Nisan 2019
Gönderilme Tarihi 23 Aralık 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 32 Sayı: 1

Kaynak Göster

APA Özen, M. O., Kaya, S., Uylaş, S., Çetin, D., vd. (2019). Expression patterns of ROS responsive genes on B-stressed canola (Brassica napus ssp. oleifera L.) following selenium treatment. Mediterranean Agricultural Sciences, 32(1), 35-41. https://doi.org/10.29136/mediterranean.500611
AMA Özen MO, Kaya S, Uylaş S, Çetin D, Arı E, Akbudak MA. Expression patterns of ROS responsive genes on B-stressed canola (Brassica napus ssp. oleifera L.) following selenium treatment. Mediterranean Agricultural Sciences. Nisan 2019;32(1):35-41. doi:10.29136/mediterranean.500611
Chicago Özen, Melahat Ozge, Seyda Kaya, Senem Uylaş, Durmus Çetin, Esin Arı, ve M. Aydın Akbudak. “Expression Patterns of ROS Responsive Genes on B-Stressed Canola (Brassica Napus Ssp. Oleifera L.) Following Selenium Treatment”. Mediterranean Agricultural Sciences 32, sy. 1 (Nisan 2019): 35-41. https://doi.org/10.29136/mediterranean.500611.
EndNote Özen MO, Kaya S, Uylaş S, Çetin D, Arı E, Akbudak MA (01 Nisan 2019) Expression patterns of ROS responsive genes on B-stressed canola (Brassica napus ssp. oleifera L.) following selenium treatment. Mediterranean Agricultural Sciences 32 1 35–41.
IEEE M. O. Özen, S. Kaya, S. Uylaş, D. Çetin, E. Arı, ve M. A. Akbudak, “Expression patterns of ROS responsive genes on B-stressed canola (Brassica napus ssp. oleifera L.) following selenium treatment”, Mediterranean Agricultural Sciences, c. 32, sy. 1, ss. 35–41, 2019, doi: 10.29136/mediterranean.500611.
ISNAD Özen, Melahat Ozge vd. “Expression Patterns of ROS Responsive Genes on B-Stressed Canola (Brassica Napus Ssp. Oleifera L.) Following Selenium Treatment”. Mediterranean Agricultural Sciences 32/1 (Nisan 2019), 35-41. https://doi.org/10.29136/mediterranean.500611.
JAMA Özen MO, Kaya S, Uylaş S, Çetin D, Arı E, Akbudak MA. Expression patterns of ROS responsive genes on B-stressed canola (Brassica napus ssp. oleifera L.) following selenium treatment. Mediterranean Agricultural Sciences. 2019;32:35–41.
MLA Özen, Melahat Ozge vd. “Expression Patterns of ROS Responsive Genes on B-Stressed Canola (Brassica Napus Ssp. Oleifera L.) Following Selenium Treatment”. Mediterranean Agricultural Sciences, c. 32, sy. 1, 2019, ss. 35-41, doi:10.29136/mediterranean.500611.
Vancouver Özen MO, Kaya S, Uylaş S, Çetin D, Arı E, Akbudak MA. Expression patterns of ROS responsive genes on B-stressed canola (Brassica napus ssp. oleifera L.) following selenium treatment. Mediterranean Agricultural Sciences. 2019;32(1):35-41.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.