Araştırma Makalesi
BibTex RIS Kaynak Göster

Kumlu tın ve killi tın toprakta kokopit uygulamasının tarla kapasitesi ve devamlı solma noktası üzerine etkisi

Yıl 2020, Cilt: 33 Sayı: 2, 285 - 290, 01.08.2020
https://doi.org/10.29136/mediterranean.660207

Öz

Toprak nem sabiteleri, sulama suyu miktarlarının belirlenmesinde kullanılan önemli parametrelerin başında gelmektedir. Bu çalışmada; kokopit uygulamalarının, farklı tekstürlere sahip topraklarda suyun tutulması üzerine etkisi araştırılmıştır. Bu amaçla, kumlu tın ve killi tın tekstürlü topraklara 4 farklı dozda (%0, 1, 2, 3) kokopit uygulanarak, 3 farklı süreyle inkübasyona [1 ay (T1), 2 ay (T2), 3 ay (T3)] bırakılmış ve toprakların tarla kapasitesi ile devamlı solma noktası belirlenmiştir. İncelenen özelliklerde inkübasyon süresine bağlı olarak belirgin bir artış gözlenmemiş ve istatistiksel olarak önemli bulunmamıştır. Her iki tekstür grubu için toprakların tarla kapasitesinde en yüksek artış (yaklaşık %8 oranında) %3 kokopit uygulamasıyla T3 inkübasyon süresiyle sağlanmıştır. Toprakların devamlı solma noktasında en belirgin artış kumlu tın tekstür grubunda %3 uygulamasının T3 inkübasyon süresinde (%3.81) bulunmuştur. Ayrıca, her iki tekstür grubu için materyalin ekonomik olarak uygulanabilirliği göz önüne alındığında devamlı solma noktasında optimum artış %2 kokopit uygulamasıyla elde edilmiştir.

Kaynakça

  • Abad M, Noguera P, Puchades R, Maquieira A, Noguera V (2002) Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresource Technology 82(3): 241-245.
  • Abdelfattah MA (2013) Pedogenesis, land management and soil classification in hyper‐arid environments: results and implications from a case study in the United Arab Emirates. Soil Use and Management 29(2): 279-294.
  • Arachchi LV, Somasiri LLW (1997) Use of coir dust on the productivity of coconut on sandy soils. In Cocos (12): 54-71.
  • Bhardwaj AK, Shainberg I, Goldstein D, Warrington DN, Levy GJ (2007) Water retention and hydraulic conductivity of cross-linked polyacrylamides in sandy soils. Soil Science Society of America Journal 71(2): 406-412.
  • Bhosale PR, Chonde SG, Nakade DB, Raut PD (2012) Studies on physico-chemical characteristics of waxed and dewaxed pressmud and its effect on water holding capacity of soil. ISCA Journal of Biological Sciences 1(1): 35-41.
  • Candemir F, Gülser C (2011) Effects of different agricultural wastes on some soil quality indexes at clay and loamy sand fields. Communications in Soil Science and Plant Analysis 42(1): 13-28.
  • Dahnke WC, Whitney DA (1988) Measurement of soil salinity. Recommended Chemical Soil Test Procedures for the North Central Region 221: 32-34.
  • Demiralay İ (1993) Toprak Fiziksel Analizleri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları, Erzurum.
  • Evans MR, Konduru S, Stamps RH (1996) Source variation in physical and chemical properties of coconut coir dust. HortScience 31(6): 965-967.
  • Gülser C (2004) Tarla kapasitesi ve devamlı solma noktası değerlerinin toprakların fiziksel ve kimyasal özellikleriyle ilişkili pedotransfer eşitliklerle belirlenmesi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi 19(3): 19-23.
  • Ilahi WFF, Ahmad D (2017) A study on the physical and hydraulic characteristics of cocopeat perlite mixture as a growing media in containerized plant production. Sains Malaysiana 46(6): 975-980.
  • Ippolito JA, Tarkalson DD, Lehrsch GA (2011) Zeolite soil application method affects inorganic nitrogen, moisture, and corn growth. Soil Science 176(3): 136-142.
  • Jones Jr JB (1984) A Laboratory Guide of Exercises in Conducting Soil Test, and Plant Analyses. No. 631.42 J6.
  • Kacar B (2009) Toprak Analizleri. Nobel Yayın Dağıtım, Ankara.
  • Kadıoğlu B, Canbolat MY (2019) Organik ve inorganik materyallerin ince bünyeli toprağa ilavesi ile hazırlanan yetişme ortamlarının hidrofiziksel özellikleri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 50(2): 107-114.
  • Korkanç SY, Çimen Ş, Aklan F, Arabacıoğlu R, Köprülü H (2017) Bazı toprak iyileştiricilerin toprakların hidro-fiziksel ve kimyasal özelliklerine etkileri. Türkiye Ormancılık Dergisi 18(2): 125-132.
  • Lodolini EM, Pica F, Massetani F, Neri D (2017) Physical, chemical and biological properties of some alternative growing substrates. European Journal of Science 12(1): 32-38.
  • Meral R, Demir AD, Demir Y, Malasli MZ, Turan V (2015) The improvement of soil water holding capacity, infiltration rate, and aggregate stability with different soil conditioners. Fresensius Environmental Bulletin 24(11): 3550-3555.
  • Minitap (2020) Versiyon 19. http://www.minitab.com/en-us/products/minitab/. Erişim 01 Ocak 2020.
  • Özdemir N, Gülser C, Ekberli İ, Kop ÖT (2014) Asit toprakta düzenleyici uygulamalarının bazı toprak özellikleri ve verime etkileri. Toprak Bilimi ve Bitki Besleme Dergisi 2(1): 27-32.
  • Reeve MJ (1986) Water retention, porosity, and composition inter-relationships of alluvial soils in mid Hawke's Bay and their relevance in irrigation planning. New Zealand Journal of Agricultural Research 29(3): 457-468.
  • Thombare N, Mishra S, Siddiqui MZ, Jha U, Singh D, Mahajan GR (2018) Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydrate Polymers 185: 169-178.
  • US Salinity Laboratory Staff (1954) Diagnosis and improvement of salina and alkali soils. Agricultural Handbook 60, U.S.D.A.
  • Ülgen N, Yurtsever N (1988) Türkiye Gübre ve Gübreleme Rehberi. 3. Baskı, TC Tarım Orman Köyişleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın, Ankara.
  • Vijayalakshmi V, Nemichandrappa M, Reddy K.S, Ayyanagowdar MS (2012) Effect of polymers on moisture retention and soil water holding capacity. Karnataka Journal of Agricultural Sciences 25(4): 469-471.
  • Xu S, Zhang L, McLaughlin NB, Mi J, Chen Q, Liu J (2015) Effect of synthetic and natural water absorbing soil amendment soil physical properties under potato production in a semi-arid region. Soil and Tillage Research 148: 31-39.
  • Yangyuoru M, Boateng E, Adiku SGK, Acquah D, Adjadeh TA, Mawunya F (2006) Effects of natural and synthetic soil conditioners on soil moisture retention and maize yield. West Africa Journal of Applied Ecology (WAJAE) 9(1): 6-18.
  • Yılmaz E, Alagöz Z (2008) Organik madde toprak suyu ilişkisi. Türk Bilimsel Derlemeler Dergisi 1(2): 15-21.

Effect of cocopeat application on field capacity and permanent wilting point in sandy loam and clay loam soil

Yıl 2020, Cilt: 33 Sayı: 2, 285 - 290, 01.08.2020
https://doi.org/10.29136/mediterranean.660207

Öz

Soil moisture constants are the main parameters used to determine the amount of irrigation water. In this study, the effect of cocopeat application on the retention of water in soils with different textures was investigated. For this purpose, four different doses (0, 1, 2, 3%) of cocopeat were applied to sandy loam and clay loam textured soils for three different incubations [1 month (T1), 2 months (T2), 3 months (T3)] and soil field capacity and moisture content at permanent wilting point were determined. At the end of the study, it was observed that there weren’t significant increases in the investigated properties depending on the incubation time and these were not statistically significant. The highest increase in field capacity (approximately 8%) of soils for both texture groups were obtained from 3% cocopeat application with the T3 incubation period. The most significant increase in the permanent wilting point was found in sandy loam texture for 3% application and T3 incubation time (3.81%). Moreover, considering its economic applicability, it had been determined that optimum increase in permanent wilting point was achieved by 2% cocopeat application for both texture groups.

Kaynakça

  • Abad M, Noguera P, Puchades R, Maquieira A, Noguera V (2002) Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresource Technology 82(3): 241-245.
  • Abdelfattah MA (2013) Pedogenesis, land management and soil classification in hyper‐arid environments: results and implications from a case study in the United Arab Emirates. Soil Use and Management 29(2): 279-294.
  • Arachchi LV, Somasiri LLW (1997) Use of coir dust on the productivity of coconut on sandy soils. In Cocos (12): 54-71.
  • Bhardwaj AK, Shainberg I, Goldstein D, Warrington DN, Levy GJ (2007) Water retention and hydraulic conductivity of cross-linked polyacrylamides in sandy soils. Soil Science Society of America Journal 71(2): 406-412.
  • Bhosale PR, Chonde SG, Nakade DB, Raut PD (2012) Studies on physico-chemical characteristics of waxed and dewaxed pressmud and its effect on water holding capacity of soil. ISCA Journal of Biological Sciences 1(1): 35-41.
  • Candemir F, Gülser C (2011) Effects of different agricultural wastes on some soil quality indexes at clay and loamy sand fields. Communications in Soil Science and Plant Analysis 42(1): 13-28.
  • Dahnke WC, Whitney DA (1988) Measurement of soil salinity. Recommended Chemical Soil Test Procedures for the North Central Region 221: 32-34.
  • Demiralay İ (1993) Toprak Fiziksel Analizleri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları, Erzurum.
  • Evans MR, Konduru S, Stamps RH (1996) Source variation in physical and chemical properties of coconut coir dust. HortScience 31(6): 965-967.
  • Gülser C (2004) Tarla kapasitesi ve devamlı solma noktası değerlerinin toprakların fiziksel ve kimyasal özellikleriyle ilişkili pedotransfer eşitliklerle belirlenmesi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi 19(3): 19-23.
  • Ilahi WFF, Ahmad D (2017) A study on the physical and hydraulic characteristics of cocopeat perlite mixture as a growing media in containerized plant production. Sains Malaysiana 46(6): 975-980.
  • Ippolito JA, Tarkalson DD, Lehrsch GA (2011) Zeolite soil application method affects inorganic nitrogen, moisture, and corn growth. Soil Science 176(3): 136-142.
  • Jones Jr JB (1984) A Laboratory Guide of Exercises in Conducting Soil Test, and Plant Analyses. No. 631.42 J6.
  • Kacar B (2009) Toprak Analizleri. Nobel Yayın Dağıtım, Ankara.
  • Kadıoğlu B, Canbolat MY (2019) Organik ve inorganik materyallerin ince bünyeli toprağa ilavesi ile hazırlanan yetişme ortamlarının hidrofiziksel özellikleri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 50(2): 107-114.
  • Korkanç SY, Çimen Ş, Aklan F, Arabacıoğlu R, Köprülü H (2017) Bazı toprak iyileştiricilerin toprakların hidro-fiziksel ve kimyasal özelliklerine etkileri. Türkiye Ormancılık Dergisi 18(2): 125-132.
  • Lodolini EM, Pica F, Massetani F, Neri D (2017) Physical, chemical and biological properties of some alternative growing substrates. European Journal of Science 12(1): 32-38.
  • Meral R, Demir AD, Demir Y, Malasli MZ, Turan V (2015) The improvement of soil water holding capacity, infiltration rate, and aggregate stability with different soil conditioners. Fresensius Environmental Bulletin 24(11): 3550-3555.
  • Minitap (2020) Versiyon 19. http://www.minitab.com/en-us/products/minitab/. Erişim 01 Ocak 2020.
  • Özdemir N, Gülser C, Ekberli İ, Kop ÖT (2014) Asit toprakta düzenleyici uygulamalarının bazı toprak özellikleri ve verime etkileri. Toprak Bilimi ve Bitki Besleme Dergisi 2(1): 27-32.
  • Reeve MJ (1986) Water retention, porosity, and composition inter-relationships of alluvial soils in mid Hawke's Bay and their relevance in irrigation planning. New Zealand Journal of Agricultural Research 29(3): 457-468.
  • Thombare N, Mishra S, Siddiqui MZ, Jha U, Singh D, Mahajan GR (2018) Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydrate Polymers 185: 169-178.
  • US Salinity Laboratory Staff (1954) Diagnosis and improvement of salina and alkali soils. Agricultural Handbook 60, U.S.D.A.
  • Ülgen N, Yurtsever N (1988) Türkiye Gübre ve Gübreleme Rehberi. 3. Baskı, TC Tarım Orman Köyişleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın, Ankara.
  • Vijayalakshmi V, Nemichandrappa M, Reddy K.S, Ayyanagowdar MS (2012) Effect of polymers on moisture retention and soil water holding capacity. Karnataka Journal of Agricultural Sciences 25(4): 469-471.
  • Xu S, Zhang L, McLaughlin NB, Mi J, Chen Q, Liu J (2015) Effect of synthetic and natural water absorbing soil amendment soil physical properties under potato production in a semi-arid region. Soil and Tillage Research 148: 31-39.
  • Yangyuoru M, Boateng E, Adiku SGK, Acquah D, Adjadeh TA, Mawunya F (2006) Effects of natural and synthetic soil conditioners on soil moisture retention and maize yield. West Africa Journal of Applied Ecology (WAJAE) 9(1): 6-18.
  • Yılmaz E, Alagöz Z (2008) Organik madde toprak suyu ilişkisi. Türk Bilimsel Derlemeler Dergisi 1(2): 15-21.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Pelin Alaboz 0000-0001-7345-938X

Talip Çakmakcı 0000-0001-5815-1256

Yayımlanma Tarihi 1 Ağustos 2020
Gönderilme Tarihi 16 Aralık 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 33 Sayı: 2

Kaynak Göster

APA Alaboz, P., & Çakmakcı, T. (2020). Kumlu tın ve killi tın toprakta kokopit uygulamasının tarla kapasitesi ve devamlı solma noktası üzerine etkisi. Mediterranean Agricultural Sciences, 33(2), 285-290. https://doi.org/10.29136/mediterranean.660207
AMA Alaboz P, Çakmakcı T. Kumlu tın ve killi tın toprakta kokopit uygulamasının tarla kapasitesi ve devamlı solma noktası üzerine etkisi. Mediterranean Agricultural Sciences. Ağustos 2020;33(2):285-290. doi:10.29136/mediterranean.660207
Chicago Alaboz, Pelin, ve Talip Çakmakcı. “Kumlu tın Ve Killi tın Toprakta Kokopit uygulamasının Tarla Kapasitesi Ve Devamlı Solma Noktası üzerine Etkisi”. Mediterranean Agricultural Sciences 33, sy. 2 (Ağustos 2020): 285-90. https://doi.org/10.29136/mediterranean.660207.
EndNote Alaboz P, Çakmakcı T (01 Ağustos 2020) Kumlu tın ve killi tın toprakta kokopit uygulamasının tarla kapasitesi ve devamlı solma noktası üzerine etkisi. Mediterranean Agricultural Sciences 33 2 285–290.
IEEE P. Alaboz ve T. Çakmakcı, “Kumlu tın ve killi tın toprakta kokopit uygulamasının tarla kapasitesi ve devamlı solma noktası üzerine etkisi”, Mediterranean Agricultural Sciences, c. 33, sy. 2, ss. 285–290, 2020, doi: 10.29136/mediterranean.660207.
ISNAD Alaboz, Pelin - Çakmakcı, Talip. “Kumlu tın Ve Killi tın Toprakta Kokopit uygulamasının Tarla Kapasitesi Ve Devamlı Solma Noktası üzerine Etkisi”. Mediterranean Agricultural Sciences 33/2 (Ağustos 2020), 285-290. https://doi.org/10.29136/mediterranean.660207.
JAMA Alaboz P, Çakmakcı T. Kumlu tın ve killi tın toprakta kokopit uygulamasının tarla kapasitesi ve devamlı solma noktası üzerine etkisi. Mediterranean Agricultural Sciences. 2020;33:285–290.
MLA Alaboz, Pelin ve Talip Çakmakcı. “Kumlu tın Ve Killi tın Toprakta Kokopit uygulamasının Tarla Kapasitesi Ve Devamlı Solma Noktası üzerine Etkisi”. Mediterranean Agricultural Sciences, c. 33, sy. 2, 2020, ss. 285-90, doi:10.29136/mediterranean.660207.
Vancouver Alaboz P, Çakmakcı T. Kumlu tın ve killi tın toprakta kokopit uygulamasının tarla kapasitesi ve devamlı solma noktası üzerine etkisi. Mediterranean Agricultural Sciences. 2020;33(2):285-90.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.