Research Article
BibTex RIS Cite

Mısır-mısır pası uyumlu interaksiyonunda ekspresyonu değişim gösteren genlerin DDRT-PCR analizi

Year 2020, Volume: 33 Issue: 2, 259 - 265, 01.08.2020
https://doi.org/10.29136/mediterranean.677461

Abstract

Bitki-mikrop interaksiyonlarında ekspresyonu değişim gösteren genlerin tanımlanması, konukçu direnci ve duyarlılığında gerçekleşen fizyolojik değişimler ve bunlardan sorumlu genetik faktörler ve mekanizmalar hakkında değerli bilgiler sağlamaktadır. Mısır (Zea mays) ve mısır pası (Puccinia sorghi) uyumlu interaksiyonunda gerçekleştirdiğimiz çalışmada, ekspresyonu değişim gösteren 98 transkript derivativi fragment (TDF) tanımlanmıştır. Klonlanarak sekans karakterizasyonu yapılan 72 TDF ile gerçekleştirilen GenBankası taramaları, münferit etiketler için bir veya daha fazla benzer kayıt bulunduğunu göstermektedir. Genel olarak, TDF’lerin yaklaşık yarısının fonksiyonu bilinen genlerin sekanslarına benzer olduğu ve bunların önemli bir bölümünün bitki-patojen interaksiyonlarında ekspresyonu değişim gösterenler oldukları tespit edilmiştir. Bunlar arasında, karbonik anhidraz, Bip2, An2, ARP ve ASR3 proteinlerini kodlayan genlere benzerlik gösteren TDF’ler bulunmaktadır. TDF’lerin kalan bölümü, diğer stres yanıtlarıyla ilgili olanlar ve karakterize edilmemiş/hipotetik protein kodlayan sekanslara benzerlik göstermektedir. ZmBip2, ZmCA, ZmcALDH, ZmARP ve ZmARPP3 genleri için RT-qPCR primerler tasarlanarak kontrol ve infekte materyalde ekspresyon teyitleri yapıldı. ZmCA hariç, diğerlerinin tespitlerinde gözlenen ekspresyon değişimleri doğrulandı. Sınırlı sayıda TDF çalışılmış olmakla birlikte, belirli fonksiyonlarla ilişkili olanlarla birlikte fonksiyonu bilinmeyenler, çalışılan patosistem uyumlu interaksiyonunda ekspresyonu modülasyon gösteren genler olarak tanımlanmıştır.

Supporting Institution

Yozgat Bozok Üniversitesi, BAP Birimi

Project Number

BAP projesi, 6601-FBE/19-256

Thanks

Destek için teşekkür ederiz.

References

  • Bachem CWB, Van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. The Plant Journal 9: 745-53.
  • Bigeard J, Colcombet J, Hirt H (2015) Signaling mechanisms in Pattern-Triggered Immunity (PTI). Molecular Plant 8: 521-539.
  • Dickinson M (2005) Molecular Plant Pathology, pp. 160-168, BIOS Scientific Publishers. New York: Taylor & Francis Group.
  • Flor HH (1971) Current status of the gene-for-gene concept. Annual Review of Phytopatholoy 9: 275-296.
  • Gebrie SA (2016) Biotrophic fungi infection and plant defense mechanism. Journal of Plant Pathology Microbiology 7: 378-384.
  • Greenberg JT (1997) Programmed cell death in plant-pathogen interactions. Annal Review of Plant Physiology and Plant Molecular Biology 48: 525-41.
  • Harris LJ, Saparno A, Johnston A, Prisic S, Xu M, Allard S, Kathiresan A, Ouellet T, Peters RJ (2005) The maize An2 gene is induced by Fusarium attack and encodes an ent-copalyl diphosphate synthase. Plant Molecular Biolology 59: 881-894.
  • Heath MC (2000) Hypersensitive response-related death. Plant Molecular Biology 44: 321-334.
  • Hulbert SH (1997) Structure and evolution of the rp1 complex conferring rust resistance in maize. Annual Review of Phytopathology 35(1): 293-310.
  • Jelitto-Van Dooren EP, Vidal S, Denecke J (1999) Anticipating endoplasmic reticulum stress: a novel early response before pathogenesis-related gene induction. The Plant Cell 11: 1935-1944.
  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444: 323-329.
  • Kazan K, Schenk PM, Wilson I, Manners JM (2001) DNA microarrays: New tools in the analysis of plant defense response. Molecular Plant Pathology 2(3): 177-185.
  • Kim NK, Hwang BK (2015) Pepper aldehyde dehydrogenase CaALDH1 interacts with Xanthomonas effector AvrBsT and promotes effector triggered cell death and defense responses. Journal Experimental Botany 66(11): 3367-3380.
  • Kørner C, Du X, Vollmer ME, Pajerowska-Mukhtar K (2015) Endoplasmic reticulum stress signaling in plant immunity - At the crossroad of life and death. International Journal of Molecular Sciencess 16: 26582-26598.
  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967-971.
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408.
  • Lodha TD, Basak J (2012) Plant–pathogen interactions: What microarray tells about it?. Molecular Biotechnology 50: 87-97.
  • Park CJ, Han SW, Chen X, Ronald PC (2010) Elucidation of XA21-mediated innate immunity. Cell Microbiology 12(8): 1017-1025.
  • Qin X, Liu JH, Zhao WS, Chen XJ, Guo ZJ, Peng YL (2013) Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Molecular Plant Microbe Interactions 26: 227-239.
  • Restrepo S, Myers KL, Pozo OD, Martin GB, Hart AL, Buell CR, Fry WE, Smart CD (2005) Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Molecular Plant Microbe Interactions 18: 913-922.
  • Rezzonico F, Rupp O, Fahrentrapp J (2017) Pathogen recognition in compatible plant-microbe interactions. Scientific Reports 7: 63-83.
  • Sahah DA, Dillard H (2006) Yield loss in sweet corn caused by Puccinia sorghi: A meta-analysis. Plant Disease 90: 1413-1418.
  • Singh S, Brocker C, Koppaka V, Ying C, Jackson B, Matsumoto A, Thompson DC, Vasiliou V (2013) Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radical Biology Medicine 56: 89-101.
  • Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. The Proceedings of the National Academy of Sciences of U.S.A 99: 11640-11645.
  • Südüpak MA (2014) A cDNA-AFLP protocol with reciprocally arranged 2-enzyme sequential digestion and silver staining detection. Turkish Journal of Biolology 38: 260-270.
  • Tsunezoka H, Fujiwara M, Kawasaki T, Shimamoto K (2005) Proteome analysis of programmed cell death and defense signaling using the rice lesion mimic mutant cdr2. Molecular Plant-Microbe Interactions 18: 52-59.
  • Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308: 1036-1040.
  • Wang X, Wang Y, Hao W (2007) cDNA cloning and characterization of the novel genes related to aldehyde dehydrogenase from wild Chinese grape (Vitis pseudoreticulata). DNA Sequence18(1): 9-18.
  • Wang X, Liu T, Li C, Zhao Z (2012) Gene expression profiles in maize (Zea mays L.) leaves inoculation with southern corn rust (Puccinia polysora Underw.). Acta Physiologiae Plantarum 34: 997-1006.
  • Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA (2007) Transcript profiling in host-pathogen interactions. Annual Review of Phytopathology 48: 457-479.
  • Yu M, Yun BW, Spoel SH, Loake GJ (2012) A sleigh ride through the SNO: Regulation of plant immune function by protein S-nitrosylation. Current Opinion Plant Biology 15: 424-430.
  • Zhao Y, Li C, Ge J, Xu M, Zhu Q, Wu T, Guo A, Xie J, Dong H (2014) Recessive mutation identifies auxin-repressed protein ARP1, which regulates growth and disease resistance in tobacco. Molecular Plant Microbe Interaction 27(7): 638-654.

DDRT-PCR analysis of the expressional modulation showing genes in the maize-maize rust compatible interaction

Year 2020, Volume: 33 Issue: 2, 259 - 265, 01.08.2020
https://doi.org/10.29136/mediterranean.677461

Abstract

Differential display analyses of expressional modulations occurring in plant-microbe interactions provide valuable information about the physiological changes and underlying genetic factors and mechanisms involved in host resistance and susceptibility to disease. We carried out a differential display analysis study in the compatible interaction of Z. mays and P. sorghi and identified 98 Transcript Derived Fragments (TDFs) as expressional modulation showing tags. 72 TDFs were cloned and sequenced. Sequence database similarity searches revealed that there is at least one close matching GenBank record for each TDF. Compiled results showed that approximately half of the TDFs were derived from genes with known functions, about a half of which are known to display expressional modulations in plant-microbe interactions. CA, BiP2, An2, ARP1 and ASR3-like protein encoding sequence similar TDFs constituted the prominent examples of this group. A large proportion of TDFs were found to be similar to uncharacterized/hypothetical protein encoding GenBank records. RT-qPCR primers were designed for Bip2, CA, cALDH, ARP and Arpp3 genes to verify their observed expressional modulations, which were generally confirmed except for CA. Although a limited number of TDFs were characterized, overall, the results provide an overview to the expressional modulation showing genes in the compatible interaction of the studied pathosystem.

Project Number

BAP projesi, 6601-FBE/19-256

References

  • Bachem CWB, Van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. The Plant Journal 9: 745-53.
  • Bigeard J, Colcombet J, Hirt H (2015) Signaling mechanisms in Pattern-Triggered Immunity (PTI). Molecular Plant 8: 521-539.
  • Dickinson M (2005) Molecular Plant Pathology, pp. 160-168, BIOS Scientific Publishers. New York: Taylor & Francis Group.
  • Flor HH (1971) Current status of the gene-for-gene concept. Annual Review of Phytopatholoy 9: 275-296.
  • Gebrie SA (2016) Biotrophic fungi infection and plant defense mechanism. Journal of Plant Pathology Microbiology 7: 378-384.
  • Greenberg JT (1997) Programmed cell death in plant-pathogen interactions. Annal Review of Plant Physiology and Plant Molecular Biology 48: 525-41.
  • Harris LJ, Saparno A, Johnston A, Prisic S, Xu M, Allard S, Kathiresan A, Ouellet T, Peters RJ (2005) The maize An2 gene is induced by Fusarium attack and encodes an ent-copalyl diphosphate synthase. Plant Molecular Biolology 59: 881-894.
  • Heath MC (2000) Hypersensitive response-related death. Plant Molecular Biology 44: 321-334.
  • Hulbert SH (1997) Structure and evolution of the rp1 complex conferring rust resistance in maize. Annual Review of Phytopathology 35(1): 293-310.
  • Jelitto-Van Dooren EP, Vidal S, Denecke J (1999) Anticipating endoplasmic reticulum stress: a novel early response before pathogenesis-related gene induction. The Plant Cell 11: 1935-1944.
  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444: 323-329.
  • Kazan K, Schenk PM, Wilson I, Manners JM (2001) DNA microarrays: New tools in the analysis of plant defense response. Molecular Plant Pathology 2(3): 177-185.
  • Kim NK, Hwang BK (2015) Pepper aldehyde dehydrogenase CaALDH1 interacts with Xanthomonas effector AvrBsT and promotes effector triggered cell death and defense responses. Journal Experimental Botany 66(11): 3367-3380.
  • Kørner C, Du X, Vollmer ME, Pajerowska-Mukhtar K (2015) Endoplasmic reticulum stress signaling in plant immunity - At the crossroad of life and death. International Journal of Molecular Sciencess 16: 26582-26598.
  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967-971.
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408.
  • Lodha TD, Basak J (2012) Plant–pathogen interactions: What microarray tells about it?. Molecular Biotechnology 50: 87-97.
  • Park CJ, Han SW, Chen X, Ronald PC (2010) Elucidation of XA21-mediated innate immunity. Cell Microbiology 12(8): 1017-1025.
  • Qin X, Liu JH, Zhao WS, Chen XJ, Guo ZJ, Peng YL (2013) Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Molecular Plant Microbe Interactions 26: 227-239.
  • Restrepo S, Myers KL, Pozo OD, Martin GB, Hart AL, Buell CR, Fry WE, Smart CD (2005) Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Molecular Plant Microbe Interactions 18: 913-922.
  • Rezzonico F, Rupp O, Fahrentrapp J (2017) Pathogen recognition in compatible plant-microbe interactions. Scientific Reports 7: 63-83.
  • Sahah DA, Dillard H (2006) Yield loss in sweet corn caused by Puccinia sorghi: A meta-analysis. Plant Disease 90: 1413-1418.
  • Singh S, Brocker C, Koppaka V, Ying C, Jackson B, Matsumoto A, Thompson DC, Vasiliou V (2013) Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radical Biology Medicine 56: 89-101.
  • Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. The Proceedings of the National Academy of Sciences of U.S.A 99: 11640-11645.
  • Südüpak MA (2014) A cDNA-AFLP protocol with reciprocally arranged 2-enzyme sequential digestion and silver staining detection. Turkish Journal of Biolology 38: 260-270.
  • Tsunezoka H, Fujiwara M, Kawasaki T, Shimamoto K (2005) Proteome analysis of programmed cell death and defense signaling using the rice lesion mimic mutant cdr2. Molecular Plant-Microbe Interactions 18: 52-59.
  • Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308: 1036-1040.
  • Wang X, Wang Y, Hao W (2007) cDNA cloning and characterization of the novel genes related to aldehyde dehydrogenase from wild Chinese grape (Vitis pseudoreticulata). DNA Sequence18(1): 9-18.
  • Wang X, Liu T, Li C, Zhao Z (2012) Gene expression profiles in maize (Zea mays L.) leaves inoculation with southern corn rust (Puccinia polysora Underw.). Acta Physiologiae Plantarum 34: 997-1006.
  • Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA (2007) Transcript profiling in host-pathogen interactions. Annual Review of Phytopathology 48: 457-479.
  • Yu M, Yun BW, Spoel SH, Loake GJ (2012) A sleigh ride through the SNO: Regulation of plant immune function by protein S-nitrosylation. Current Opinion Plant Biology 15: 424-430.
  • Zhao Y, Li C, Ge J, Xu M, Zhu Q, Wu T, Guo A, Xie J, Dong H (2014) Recessive mutation identifies auxin-repressed protein ARP1, which regulates growth and disease resistance in tobacco. Molecular Plant Microbe Interaction 27(7): 638-654.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Hatice Çilkol 0000-0003-4110-380X

Mehmet Ali Südüpak 0000-0001-9439-0916

Project Number BAP projesi, 6601-FBE/19-256
Publication Date August 1, 2020
Submission Date January 20, 2020
Published in Issue Year 2020 Volume: 33 Issue: 2

Cite

APA Çilkol, H., & Südüpak, M. A. (2020). Mısır-mısır pası uyumlu interaksiyonunda ekspresyonu değişim gösteren genlerin DDRT-PCR analizi. Mediterranean Agricultural Sciences, 33(2), 259-265. https://doi.org/10.29136/mediterranean.677461
AMA Çilkol H, Südüpak MA. Mısır-mısır pası uyumlu interaksiyonunda ekspresyonu değişim gösteren genlerin DDRT-PCR analizi. Mediterranean Agricultural Sciences. August 2020;33(2):259-265. doi:10.29136/mediterranean.677461
Chicago Çilkol, Hatice, and Mehmet Ali Südüpak. “Mısır-mısır Pası Uyumlu Interaksiyonunda Ekspresyonu değişim gösteren Genlerin DDRT-PCR Analizi”. Mediterranean Agricultural Sciences 33, no. 2 (August 2020): 259-65. https://doi.org/10.29136/mediterranean.677461.
EndNote Çilkol H, Südüpak MA (August 1, 2020) Mısır-mısır pası uyumlu interaksiyonunda ekspresyonu değişim gösteren genlerin DDRT-PCR analizi. Mediterranean Agricultural Sciences 33 2 259–265.
IEEE H. Çilkol and M. A. Südüpak, “Mısır-mısır pası uyumlu interaksiyonunda ekspresyonu değişim gösteren genlerin DDRT-PCR analizi”, Mediterranean Agricultural Sciences, vol. 33, no. 2, pp. 259–265, 2020, doi: 10.29136/mediterranean.677461.
ISNAD Çilkol, Hatice - Südüpak, Mehmet Ali. “Mısır-mısır Pası Uyumlu Interaksiyonunda Ekspresyonu değişim gösteren Genlerin DDRT-PCR Analizi”. Mediterranean Agricultural Sciences 33/2 (August 2020), 259-265. https://doi.org/10.29136/mediterranean.677461.
JAMA Çilkol H, Südüpak MA. Mısır-mısır pası uyumlu interaksiyonunda ekspresyonu değişim gösteren genlerin DDRT-PCR analizi. Mediterranean Agricultural Sciences. 2020;33:259–265.
MLA Çilkol, Hatice and Mehmet Ali Südüpak. “Mısır-mısır Pası Uyumlu Interaksiyonunda Ekspresyonu değişim gösteren Genlerin DDRT-PCR Analizi”. Mediterranean Agricultural Sciences, vol. 33, no. 2, 2020, pp. 259-65, doi:10.29136/mediterranean.677461.
Vancouver Çilkol H, Südüpak MA. Mısır-mısır pası uyumlu interaksiyonunda ekspresyonu değişim gösteren genlerin DDRT-PCR analizi. Mediterranean Agricultural Sciences. 2020;33(2):259-65.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.