Araştırma Makalesi
BibTex RIS Kaynak Göster

SSR marker analysis of plant height in sweet sorghum [Sorghum bicolor (L.) Moench]

Yıl 2020, Cilt: 33 Sayı: 3, 405 - 410, 28.12.2020
https://doi.org/10.29136/mediterranean.780085

Öz

Sorghum (Sorghum bicolor (L.) Moench) is one of the most promising bio-energy crops with the ability to produce high biomass with low input. Plant height that has a significant contribution to gain in bio-ethanol production is among the most important biomass yield components. In the present study, sorghum genotypes were screened with four SSR markers which are associated with plant height QTLs. The molecular assays were confirmed with two different environments in two consecutive years. In the first year of the study, molecular analyses were performed with a sorghum collection consisting of 551 accessions as well as plant height measurements were performed under field condition. In the second year, 53 out of 551 accessions were selected and further tests with nine controls were performed in Antalya (a lowland province) and Konya (a highland province) locations along with molecular marker analyses. The results indicated that four SSR markers efficiency were assessed as 38% at lowland and 39% at highland. Markers 40-9187 and 37-1740 were of more powerful to explain plant height QTLs than the other two markers at two environments. This study reported the successful application of the association between markers and plant height in two environments to identify valuable genetic resources for bio-energy production in sweet sorghum.

Destekleyen Kurum

Scientific and Technological Research Council of Turkey (TUBITAK)

Proje Numarası

113O092

Teşekkür

We are grateful to International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Gene bank, Hyderabad, India and United States Department of Agriculture (USDA), Gene bank, USA, and West Mediterranean Agricultural Research Institute (BATEM), Antalya, Turkey for providing genetic material.

Kaynakça

  • Almodares A, Mostafafi Darany SM (2006) Effects of planting date and time of nitrogen application on yield and sugar content of sweet sorghum. Journal of Environmental Biology 27: 601-605.
  • Bai C, Wang C, Zhu Z, Cong L, Li D, Liu Y, Zheng W, Lu X (2017) QTL mapping of agronomically important traits in sorghum (Sorghum bicolor L.). Euphytica 213(285).
  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, Lin YR, Liu SC, Luo L, Marler BS, Ming R, Mitchell SE, Qiang D, Reichmann K, Schulze SR, Skinner DN, Wang YW, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165: 367-386.
  • Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theoretical and Applied Genetics 113: 931-942.
  • Brown PJ, Rooney WL, Franks C, Kresovich S (2008) Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics 180: 629-637.
  • Burks PS, Kaiser CM, Hawkins ME, Brown PJ (2015) Genomewide association for sugar yield in sweet sorghum. Crop Science 55: 2138-2148.
  • Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12: 13-15.
  • Felderhoff TJ, Murray SC, Klein PE, Sharma A, Hamblin MT, Kresovich S, Vermerris W, Rooney WL (2012) QTLs for energy-related traits in a sweet x grain sorghum [Sorghum bicolor (L.) Moench] mapping population. Crop Science 52: 2040-2049.
  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theoretical and Applied Genetics 112: 1295-1305.
  • Han KJ, Pitman WD, Alison MW, Harrell DL, Viator HP, McCormicks ME, Gravois KA, Kim M, Day DF (2012) Agronomic considerations for sweet sorghum biofuel production in the South-Central USA. Bioenergy Research 5: 748-758.
  • Han KJ, Pitman WD, Kim M, Day DF, Alison MW, McCormick ME, Aita G (2013) Ethanol production potential of sweet sorghum assessed using forage fiber analysis procedures. GCB Bioenergy 5: 358-366.
  • Hariprasanna K, Patil JV (2015) Sorghum: Origin, classification, biology and improvement. In: Madhusdhana R, Rajendrakumar P, Patil JV (Eds), Sorghum molecular breeding, Springer, India, pp. 3-19.
  • Harlen JR, De Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Science 12: 172-176.
  • Hilley J, Truong S, Olson S, Morishige D, Mullet J (2016) Identification of Dw1, a regulator of sorghum stem internode length. Plos One 11: e0151271.
  • Kimber CT (2000) Origins of domesticated sorghum and its early diffusion to India and China. In: Smith CW, Frederiksen RA (Eds), Sorghum: origin, history, technology, and production, Wiley Series in Crop Science, New York, pp. 3-96.
  • Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu H, Rooney WL (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theoretical and Applied Genetics 102: 307-319.
  • Klein C, Chan A, Kircher L, Cundiff AJ, Gardner N, Hrovat Y, Scholz A, Kendall BE, Airame S (2008) Striking a balance between biodiversity conservation and socioeconomic viability in the design of marine protected areas. Conservation Biology 22: 691-700.
  • Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the poaceae, in referecence to an interspecific sorghum population. Genetics 141: 391-411.
  • Mace E, Jordan D (2010) Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theoretical and Applied Genetics 121: 1339-1356.
  • Madhusudhana R (2015) Application of DNA Markers for Genetic Improvement. In: Madhusudhana R, Rajendrakumar P, Patil JV (Eds), Sorghum molecular breeding, Springer, India, pp. 71-99.
  • Mann JA, Kimber CT, Miller FR (1983) The origin and early cultivation of sorghums in Africa. Texas: Texas Agricultural Experiment Station.
  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences of the United States of America 110: 453-458.
  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302: 81-84.
  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Science 48: 2165-2179.
  • Murray SC, Rooney WL, Mitchell SE, Kresovich S (2009) Sweet sorghum diversity and association mapping for Brix and height. Plant Genome 2: 48-62.
  • Ongom PO, Ejeta G (2018) Mating design and genetic structure of a multi-parent advanced generation intercross (MAGIC) population of sorghum (Sorghum bicolor (L.) Moench). G3-Genes Genomes Genetics 8: 331-341.
  • Paterson AH, Bowers JE, Bruggmann R et al. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551-556.
  • Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theoretical and Applied Genetics 90: 380-388.
  • Quinby JR, Karper RE (1954) Inheritance of height in sorghum. Agronomy Journal 46: 211-216.
  • Quinby JR (1967) The maturity genes of sorghum. In: Norman A (Ed), Advances in agronomy XIX, Academic Press, New York, pp. 267-305.
  • Rains GC, Cundiff JS, Vaughan DH (1990) Development of a whole-stalk sweet sorghum harvester. Transactions of the ASAE 33: 56-62.
  • Reddy DS, Bhatnagar-Mathur P, Cindhuri KS, Sharma KK (2013) Evaluation and validation of reference genes for normalization of quantitative real-time PCR based gene expression studies in peanut. Plos One 8: e78555.
  • Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar related traits in a sweet 9 grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Molecular Breeding 22: 367-384.
  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuel Bioproducts Biorefining 1: 147-157.
  • Saballos A (2008) Development and utilization of sorghum as a bioenergy crop. In: Vermerris W (Ed), Genetic improvement of bioenergy crops, Springer Science and Business Media, New York, pp. 211-248.
  • Salas Fernandez MG, Becraft PW, Yin Y, Lubberstedt T (2009) From dwarves to giants? Plant height manipulation for biomass yield. Trends in Plant Science 14: 454-461.
  • Shuklaa S, Felderhoff TJ, Saballos A, Vermerris W (2017) The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor (L.) Moench). Field Crops Research 203: 181-191.
  • Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Science 49: 1769-1780.
  • Upadhyaya HD, Wang YH, Sharma S, Singh S (2012) Association mapping of height and maturity across five environments using the sorghum mini core collection. Genome 55: 471-479.
  • Upadhyaya HD, Wang YH, Gowda CLL, Sharma S (2013) Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theoretical and Applied Genetics 126: 2003-2015.
  • Wang YH, Bible P, Loganantharaj R, Upadhyaya HD (2012) Identification of SSR markers associated with height using pool based genome-wide association mapping in sorghum. Mol Breeding 30: 281-292.
  • Yamaguchi M, Fujimoto H, Hirano K, Araki-Nakamura S, Ohmae-Shinohara K, Fujii A, Tsunashima M, Song XJ, Ito Y, Nagae R, Wu J, Mizuno H, Yonemaru J, Matsumoto T, Kitano H, Matsuoka M, Kasuga S, Sazuka T (2016) Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Scientific Reports 6: 28366.
  • Zhang L, Zhao YL, Gao LF, Zhao GY, Zhou RH, Zhang BS, Jia JZ (2012) TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytologist 195: 574-584.
  • Zhao YL, Dolat A, Steinberger Y, Wang X, Osman A, Xie GH (2009) Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crops Research 111: 55-64.

Şeker sorgumda [Sorgum bicolor (L.) Moench] bitki boyunun SSR marker analizi

Yıl 2020, Cilt: 33 Sayı: 3, 405 - 410, 28.12.2020
https://doi.org/10.29136/mediterranean.780085

Öz

Sorgum (Sorghum bicolor (L.) Moench), düşük girdi ile yüksek biyokütle üretebilme yeteneğine sahip umut verici biyo-enerji bitkilerinden biridir. Biyoetanol üretiminde kayda değer katkıları olan bitki boyu, biyokütle verimini oluşturan en önemli bileşenler arasındadır. Bu çalışmada, sorgum genotipleri bitki boyu QTL'leri ile ilişkili dört SSR marker ile taranmıştır. Moleküler analizler, ardışık 2 yıl ve 2 farklı ortamda doğrulanmıştır. Çalışmanın ilk yılında 551 genotipten oluşan sorgum koleksiyonunda moleküler analizler ve tarla koşullarında bitki boyu ölçümleri yapılmıştır. İkinci yılda ise 551 genotipten 53'ü seçilerek, dokuz kontrol çeşit kullanılarak moleküler analizler ile birlikte Antalya (ova) ve Konya (yayla) lokasyonlarında ileri testler gerçekleştirildi. Sonuçlara göre; dört SSR markerin verimliliği ovada %38 ve yaylada %39’dur. 40-9187 ve 37-1740 markerleri, iki ortamda da diğer iki marköre göre bitki yüksekliği ile ilişkili QTL'lerin açıklanmasında daha güçlü olarak belirlenmiştir. Bu çalışma, şeker sorgumda biyo-enerji üretimi için değerli genetik kaynakları belirlemek adına iki ortamda da markerler ve bitki boyu arasındaki ilişkinin belirlenmesinde başarılı bir şekilde uygulandığının bildirilmesidir.

Proje Numarası

113O092

Kaynakça

  • Almodares A, Mostafafi Darany SM (2006) Effects of planting date and time of nitrogen application on yield and sugar content of sweet sorghum. Journal of Environmental Biology 27: 601-605.
  • Bai C, Wang C, Zhu Z, Cong L, Li D, Liu Y, Zheng W, Lu X (2017) QTL mapping of agronomically important traits in sorghum (Sorghum bicolor L.). Euphytica 213(285).
  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, Lin YR, Liu SC, Luo L, Marler BS, Ming R, Mitchell SE, Qiang D, Reichmann K, Schulze SR, Skinner DN, Wang YW, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165: 367-386.
  • Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theoretical and Applied Genetics 113: 931-942.
  • Brown PJ, Rooney WL, Franks C, Kresovich S (2008) Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics 180: 629-637.
  • Burks PS, Kaiser CM, Hawkins ME, Brown PJ (2015) Genomewide association for sugar yield in sweet sorghum. Crop Science 55: 2138-2148.
  • Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12: 13-15.
  • Felderhoff TJ, Murray SC, Klein PE, Sharma A, Hamblin MT, Kresovich S, Vermerris W, Rooney WL (2012) QTLs for energy-related traits in a sweet x grain sorghum [Sorghum bicolor (L.) Moench] mapping population. Crop Science 52: 2040-2049.
  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theoretical and Applied Genetics 112: 1295-1305.
  • Han KJ, Pitman WD, Alison MW, Harrell DL, Viator HP, McCormicks ME, Gravois KA, Kim M, Day DF (2012) Agronomic considerations for sweet sorghum biofuel production in the South-Central USA. Bioenergy Research 5: 748-758.
  • Han KJ, Pitman WD, Kim M, Day DF, Alison MW, McCormick ME, Aita G (2013) Ethanol production potential of sweet sorghum assessed using forage fiber analysis procedures. GCB Bioenergy 5: 358-366.
  • Hariprasanna K, Patil JV (2015) Sorghum: Origin, classification, biology and improvement. In: Madhusdhana R, Rajendrakumar P, Patil JV (Eds), Sorghum molecular breeding, Springer, India, pp. 3-19.
  • Harlen JR, De Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Science 12: 172-176.
  • Hilley J, Truong S, Olson S, Morishige D, Mullet J (2016) Identification of Dw1, a regulator of sorghum stem internode length. Plos One 11: e0151271.
  • Kimber CT (2000) Origins of domesticated sorghum and its early diffusion to India and China. In: Smith CW, Frederiksen RA (Eds), Sorghum: origin, history, technology, and production, Wiley Series in Crop Science, New York, pp. 3-96.
  • Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu H, Rooney WL (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theoretical and Applied Genetics 102: 307-319.
  • Klein C, Chan A, Kircher L, Cundiff AJ, Gardner N, Hrovat Y, Scholz A, Kendall BE, Airame S (2008) Striking a balance between biodiversity conservation and socioeconomic viability in the design of marine protected areas. Conservation Biology 22: 691-700.
  • Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the poaceae, in referecence to an interspecific sorghum population. Genetics 141: 391-411.
  • Mace E, Jordan D (2010) Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theoretical and Applied Genetics 121: 1339-1356.
  • Madhusudhana R (2015) Application of DNA Markers for Genetic Improvement. In: Madhusudhana R, Rajendrakumar P, Patil JV (Eds), Sorghum molecular breeding, Springer, India, pp. 71-99.
  • Mann JA, Kimber CT, Miller FR (1983) The origin and early cultivation of sorghums in Africa. Texas: Texas Agricultural Experiment Station.
  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences of the United States of America 110: 453-458.
  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302: 81-84.
  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Science 48: 2165-2179.
  • Murray SC, Rooney WL, Mitchell SE, Kresovich S (2009) Sweet sorghum diversity and association mapping for Brix and height. Plant Genome 2: 48-62.
  • Ongom PO, Ejeta G (2018) Mating design and genetic structure of a multi-parent advanced generation intercross (MAGIC) population of sorghum (Sorghum bicolor (L.) Moench). G3-Genes Genomes Genetics 8: 331-341.
  • Paterson AH, Bowers JE, Bruggmann R et al. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551-556.
  • Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theoretical and Applied Genetics 90: 380-388.
  • Quinby JR, Karper RE (1954) Inheritance of height in sorghum. Agronomy Journal 46: 211-216.
  • Quinby JR (1967) The maturity genes of sorghum. In: Norman A (Ed), Advances in agronomy XIX, Academic Press, New York, pp. 267-305.
  • Rains GC, Cundiff JS, Vaughan DH (1990) Development of a whole-stalk sweet sorghum harvester. Transactions of the ASAE 33: 56-62.
  • Reddy DS, Bhatnagar-Mathur P, Cindhuri KS, Sharma KK (2013) Evaluation and validation of reference genes for normalization of quantitative real-time PCR based gene expression studies in peanut. Plos One 8: e78555.
  • Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar related traits in a sweet 9 grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Molecular Breeding 22: 367-384.
  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuel Bioproducts Biorefining 1: 147-157.
  • Saballos A (2008) Development and utilization of sorghum as a bioenergy crop. In: Vermerris W (Ed), Genetic improvement of bioenergy crops, Springer Science and Business Media, New York, pp. 211-248.
  • Salas Fernandez MG, Becraft PW, Yin Y, Lubberstedt T (2009) From dwarves to giants? Plant height manipulation for biomass yield. Trends in Plant Science 14: 454-461.
  • Shuklaa S, Felderhoff TJ, Saballos A, Vermerris W (2017) The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor (L.) Moench). Field Crops Research 203: 181-191.
  • Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Science 49: 1769-1780.
  • Upadhyaya HD, Wang YH, Sharma S, Singh S (2012) Association mapping of height and maturity across five environments using the sorghum mini core collection. Genome 55: 471-479.
  • Upadhyaya HD, Wang YH, Gowda CLL, Sharma S (2013) Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theoretical and Applied Genetics 126: 2003-2015.
  • Wang YH, Bible P, Loganantharaj R, Upadhyaya HD (2012) Identification of SSR markers associated with height using pool based genome-wide association mapping in sorghum. Mol Breeding 30: 281-292.
  • Yamaguchi M, Fujimoto H, Hirano K, Araki-Nakamura S, Ohmae-Shinohara K, Fujii A, Tsunashima M, Song XJ, Ito Y, Nagae R, Wu J, Mizuno H, Yonemaru J, Matsumoto T, Kitano H, Matsuoka M, Kasuga S, Sazuka T (2016) Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Scientific Reports 6: 28366.
  • Zhang L, Zhao YL, Gao LF, Zhao GY, Zhou RH, Zhang BS, Jia JZ (2012) TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytologist 195: 574-584.
  • Zhao YL, Dolat A, Steinberger Y, Wang X, Osman A, Xie GH (2009) Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crops Research 111: 55-64.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Birgul Guden 0000-0002-7375-6533

Engin Yol 0000-0002-3152-6078

Cengiz Erdurmus Bu kişi benim 0000-0002-2185-9901

Bülent Uzun 0000-0001-6228-9629

Proje Numarası 113O092
Yayımlanma Tarihi 28 Aralık 2020
Gönderilme Tarihi 13 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 33 Sayı: 3

Kaynak Göster

APA Guden, B., Yol, E., Erdurmus, C., Uzun, B. (2020). SSR marker analysis of plant height in sweet sorghum [Sorghum bicolor (L.) Moench]. Mediterranean Agricultural Sciences, 33(3), 405-410. https://doi.org/10.29136/mediterranean.780085
AMA Guden B, Yol E, Erdurmus C, Uzun B. SSR marker analysis of plant height in sweet sorghum [Sorghum bicolor (L.) Moench]. Mediterranean Agricultural Sciences. Aralık 2020;33(3):405-410. doi:10.29136/mediterranean.780085
Chicago Guden, Birgul, Engin Yol, Cengiz Erdurmus, ve Bülent Uzun. “SSR Marker Analysis of Plant Height in Sweet Sorghum [Sorghum Bicolor (L.) Moench]”. Mediterranean Agricultural Sciences 33, sy. 3 (Aralık 2020): 405-10. https://doi.org/10.29136/mediterranean.780085.
EndNote Guden B, Yol E, Erdurmus C, Uzun B (01 Aralık 2020) SSR marker analysis of plant height in sweet sorghum [Sorghum bicolor (L.) Moench]. Mediterranean Agricultural Sciences 33 3 405–410.
IEEE B. Guden, E. Yol, C. Erdurmus, ve B. Uzun, “SSR marker analysis of plant height in sweet sorghum [Sorghum bicolor (L.) Moench]”, Mediterranean Agricultural Sciences, c. 33, sy. 3, ss. 405–410, 2020, doi: 10.29136/mediterranean.780085.
ISNAD Guden, Birgul vd. “SSR Marker Analysis of Plant Height in Sweet Sorghum [Sorghum Bicolor (L.) Moench]”. Mediterranean Agricultural Sciences 33/3 (Aralık 2020), 405-410. https://doi.org/10.29136/mediterranean.780085.
JAMA Guden B, Yol E, Erdurmus C, Uzun B. SSR marker analysis of plant height in sweet sorghum [Sorghum bicolor (L.) Moench]. Mediterranean Agricultural Sciences. 2020;33:405–410.
MLA Guden, Birgul vd. “SSR Marker Analysis of Plant Height in Sweet Sorghum [Sorghum Bicolor (L.) Moench]”. Mediterranean Agricultural Sciences, c. 33, sy. 3, 2020, ss. 405-10, doi:10.29136/mediterranean.780085.
Vancouver Guden B, Yol E, Erdurmus C, Uzun B. SSR marker analysis of plant height in sweet sorghum [Sorghum bicolor (L.) Moench]. Mediterranean Agricultural Sciences. 2020;33(3):405-10.

Creative Commons License

Mediterranean Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.