Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 5 Sayı: 3, 489 - 95, 18.09.2023
https://doi.org/10.37990/medr.1292782

Öz

Proje Numarası

THD-2021-23077

Kaynakça

  • 1-Dourou P, Gourounti K, Lykeridou A, et al. Quality of life among couples with a fertility related diagnosis. Clin Pract. 2023;13:251–63.
  • 2. Ozturk, S. Selection of competent oocytes by morphological criteria for assisted reproductive technologies. Mol Reprod Dev. 2020;87:1021–36.
  • 3. Esteves SC, Roque M, Sunkara SK, et al. Oocyte quantity, as well as oocyte quality, plays a significant role for the cumulative live birth rate of a POSEIDON criteria patient. Hum Reprod. 2019;34:2555–7.
  • 4. Turathum B, Gao EM, Chian RC. The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization. Cells. 2021;10:2292.
  • 5. Lewis N, Hinrichs K, Leese HJ, et al. Energy metabolism of the equine cumulus oocyte complex during in vitro maturation. Sci Rep. 2020;10:3493.
  • 6. von Mengden L, Klamt F, Smitz J. Redox biology of human cumulus cells: basic concepts, impact on oocyte quality, and potential clinical use. Antioxid Redox Signal. 2020;32:522-35.
  • 7. Lu X, Liu Y, Xu J, et al. Mitochondrial dysfunction in cumulus cells is related to decreased reproductive capacity in advanced-age women. Fertil Steril. 2022;118:393-404.
  • 8. Yang Y, Cheung HH, Zhang C, et al. Melatonin as potential targets for delaying ovarian aging. Curr Drug Targets. 2019;20:16-28.
  • 9. Wood TC, Wildt DE. Effect of the quality of the cumulus-oocyte complex in the domestic cat on the ability of oocytes to mature, fertilize and develop into blastocysts in vitro. J Reprod Fertil. 1997;110:355-60.
  • 10. Lemseffer Y, Terret ME, Campillo C, Labrune E. Methods for assessing oocyte quality: a review of literature. Biomedicines. 2022;10:2184.
  • 11. Ölmez E, Akdoğan V, Korkmaz M, Er O. Automatic segmentation of meniscus in multispectral MRI using regions with convolutional neural network (R-CNN). Journal of Digital Imaging, 2020;33:916-29.
  • 12. Özbay Karakuş M, Er O. A comparative study on prediction of survival event of heart failure patients using machine learning algorithms. Neural Comput & Applic. 2022;34:13895-908.
  • 13. Arslan H, Er O. A comparative study on COVID-19 prediction using deep learning and machine learning algorithms: a case study on performance analysis. Sakarya Univ J Comput Inform Sci. 2022;5:71-83. 14. Olmez E, Orhan E, Hiziroglu A. Deep learning in biomedical applications: detection of lung disease with convolutional neural networks. In: Jabbar MA, Abraham A, Dogan O, eds, Deep Learning in Biomedical and Health Informatics. 1st edition. CRC Press. 2021;97-115.
  • 15. Lasiene K, Vitkus A, Valanciūte A, Lasys V. Morphological criteria of oocyte quality. Medicina (Kaunas). 2009;45:509-15.
  • 16. Hu J, Ma X, Bao JC, et al. Insulin–transferrin–selenium (ITS) improves maturation of porcine oocytes in vitro. Zygote. 2011;19:191-7.
  • 17. Chauhan MS, Singla SK, Palta P, et al. In vitro maturation and fertilization, and subsequent development of buffalo (Bubalus bubalis) embryos: effects of oocyte quality and type of serum. Reprod Fertil Dev. 1998;10:173-7. 18. Ozturk A, Allahverdi N, Saday F. Application of artificial intelligence methods for bovine gender prediction. Turk J Eng. 2022;6:54-62.
  • 19. Choudhary KK, Kavya KM, Jerome A, Sharma RK. Advances in reproductive biotechnologies. Vet World. 2016;9:388-95.
  • 20. Firuzinia S, Afzali SM, Ghasemian F, Mirroshandel SA. A robust deep learning-based multiclass segmentation method for analyzing human metaphase II oocyte images. Comput Methods Programs Biomed. 2021;201:105946.
  • 21. Targosz A, Przystałka P, Wiaderkiewicz R, Mrugacz G. Semantic segmentation of human oocyte images using deep neural networks. Biomed Eng Online. 2021;20:40.
  • 22. Athanasiou G, Cerquides J, Raes A, et al. Detecting the area of bovine cumulus oocyte complexes using deep learning and semantic segmentation. In: Cortés A, Grimaldo F, Flaminio T, eds, Artificial Intelligence Research and Development. 2022;356:249-58.
  • 23. Raudonis V, Paulauskaite-Taraseviciene A, Sutiene K, et al. Towards the automation of early-stage human embryo development detection. Biomed Eng Online. 2019;18:120.
  • 24. Kragh MF, Rimestad J, Berntsen J, Karstoft H. Automatic grading of human blastocysts from time-lapse imaging. Comput Biol Med. 2019;115:103494. 25. Monge DF, Beltran CA. Classification of Eimeria species from digital micrographies using CNNs. 10th International Conference on Pattern Recognition Systems (ICPRS-2019), Tours, France. 2019;88-91.
  • 26. Wang R, Pan W, Jin L, et al. Artificial intelligence in reproductive medicine. Reproduction. 2019;158:R139-54.

Classification of Bovine Cumulus-Oocyte Complexes with Convolutional Neural Networks

Yıl 2023, Cilt: 5 Sayı: 3, 489 - 95, 18.09.2023
https://doi.org/10.37990/medr.1292782

Öz

Aim: Determining oocyte quality is crucial for successful fertilization and embryonic development, and there is a serious correlation between live birth rates and oocyte quality. Parameters such as the regular/irregular formation of the cumulus cell layer around the oocyte, the number of cumulus cell layers and the homogeneity of the appearance of the ooplasm are used to determine the quality of the oocytes to be used in in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) methods.
Material and Methods: In this study, classification processes have been carried out using convolutional neural networks (CNN), a deep learning method, on the images of the cumulus-oocyte complex selected based on the theoretical knowledge and professional experience of embryologists. A convolutional neural network with a depth of 4 is used. In each depth level, one convolution, one ReLU and one max-pooling layer are included. The designed network architecture is trained using the Adam optimization algorithm. The cumulus-oocyte complexes (n=400) used in the study were obtained by using the oocyte aspiration method from the ovaries of the bovine slaughtered at the slaughterhouse.
Results: The CNN-based classification model developed in this study showed promising results in classifying three-class image data in terms of cumulus-oocyte complex classification. The classification model achieved high accuracy, precision, and sensitivity values on the test dataset.
Conclusion: Continuous research and optimization of the model can further improve its performance and benefit the field of cumulus-oocyte complexes classification and oocyte quality assessment.

Destekleyen Kurum

Ege University Scientific Research Projects Coordination Unit

Proje Numarası

THD-2021-23077

Teşekkür

This study is supported by the Ege University Scientific Research Projects Coordination Unit, Scientific Research Project ID: THD-2021-23077.

Kaynakça

  • 1-Dourou P, Gourounti K, Lykeridou A, et al. Quality of life among couples with a fertility related diagnosis. Clin Pract. 2023;13:251–63.
  • 2. Ozturk, S. Selection of competent oocytes by morphological criteria for assisted reproductive technologies. Mol Reprod Dev. 2020;87:1021–36.
  • 3. Esteves SC, Roque M, Sunkara SK, et al. Oocyte quantity, as well as oocyte quality, plays a significant role for the cumulative live birth rate of a POSEIDON criteria patient. Hum Reprod. 2019;34:2555–7.
  • 4. Turathum B, Gao EM, Chian RC. The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization. Cells. 2021;10:2292.
  • 5. Lewis N, Hinrichs K, Leese HJ, et al. Energy metabolism of the equine cumulus oocyte complex during in vitro maturation. Sci Rep. 2020;10:3493.
  • 6. von Mengden L, Klamt F, Smitz J. Redox biology of human cumulus cells: basic concepts, impact on oocyte quality, and potential clinical use. Antioxid Redox Signal. 2020;32:522-35.
  • 7. Lu X, Liu Y, Xu J, et al. Mitochondrial dysfunction in cumulus cells is related to decreased reproductive capacity in advanced-age women. Fertil Steril. 2022;118:393-404.
  • 8. Yang Y, Cheung HH, Zhang C, et al. Melatonin as potential targets for delaying ovarian aging. Curr Drug Targets. 2019;20:16-28.
  • 9. Wood TC, Wildt DE. Effect of the quality of the cumulus-oocyte complex in the domestic cat on the ability of oocytes to mature, fertilize and develop into blastocysts in vitro. J Reprod Fertil. 1997;110:355-60.
  • 10. Lemseffer Y, Terret ME, Campillo C, Labrune E. Methods for assessing oocyte quality: a review of literature. Biomedicines. 2022;10:2184.
  • 11. Ölmez E, Akdoğan V, Korkmaz M, Er O. Automatic segmentation of meniscus in multispectral MRI using regions with convolutional neural network (R-CNN). Journal of Digital Imaging, 2020;33:916-29.
  • 12. Özbay Karakuş M, Er O. A comparative study on prediction of survival event of heart failure patients using machine learning algorithms. Neural Comput & Applic. 2022;34:13895-908.
  • 13. Arslan H, Er O. A comparative study on COVID-19 prediction using deep learning and machine learning algorithms: a case study on performance analysis. Sakarya Univ J Comput Inform Sci. 2022;5:71-83. 14. Olmez E, Orhan E, Hiziroglu A. Deep learning in biomedical applications: detection of lung disease with convolutional neural networks. In: Jabbar MA, Abraham A, Dogan O, eds, Deep Learning in Biomedical and Health Informatics. 1st edition. CRC Press. 2021;97-115.
  • 15. Lasiene K, Vitkus A, Valanciūte A, Lasys V. Morphological criteria of oocyte quality. Medicina (Kaunas). 2009;45:509-15.
  • 16. Hu J, Ma X, Bao JC, et al. Insulin–transferrin–selenium (ITS) improves maturation of porcine oocytes in vitro. Zygote. 2011;19:191-7.
  • 17. Chauhan MS, Singla SK, Palta P, et al. In vitro maturation and fertilization, and subsequent development of buffalo (Bubalus bubalis) embryos: effects of oocyte quality and type of serum. Reprod Fertil Dev. 1998;10:173-7. 18. Ozturk A, Allahverdi N, Saday F. Application of artificial intelligence methods for bovine gender prediction. Turk J Eng. 2022;6:54-62.
  • 19. Choudhary KK, Kavya KM, Jerome A, Sharma RK. Advances in reproductive biotechnologies. Vet World. 2016;9:388-95.
  • 20. Firuzinia S, Afzali SM, Ghasemian F, Mirroshandel SA. A robust deep learning-based multiclass segmentation method for analyzing human metaphase II oocyte images. Comput Methods Programs Biomed. 2021;201:105946.
  • 21. Targosz A, Przystałka P, Wiaderkiewicz R, Mrugacz G. Semantic segmentation of human oocyte images using deep neural networks. Biomed Eng Online. 2021;20:40.
  • 22. Athanasiou G, Cerquides J, Raes A, et al. Detecting the area of bovine cumulus oocyte complexes using deep learning and semantic segmentation. In: Cortés A, Grimaldo F, Flaminio T, eds, Artificial Intelligence Research and Development. 2022;356:249-58.
  • 23. Raudonis V, Paulauskaite-Taraseviciene A, Sutiene K, et al. Towards the automation of early-stage human embryo development detection. Biomed Eng Online. 2019;18:120.
  • 24. Kragh MF, Rimestad J, Berntsen J, Karstoft H. Automatic grading of human blastocysts from time-lapse imaging. Comput Biol Med. 2019;115:103494. 25. Monge DF, Beltran CA. Classification of Eimeria species from digital micrographies using CNNs. 10th International Conference on Pattern Recognition Systems (ICPRS-2019), Tours, France. 2019;88-91.
  • 26. Wang R, Pan W, Jin L, et al. Artificial intelligence in reproductive medicine. Reproduction. 2019;158:R139-54.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Özgün Makaleler
Yazarlar

Türker Çavuşoğlu 0000-0001-7100-7080

Aylin Gökhan 0000-0002-6254-157X

Cansın Şirin 0000-0002-4530-701X

Canberk Tomruk 0000-0002-3810-3705

Kubilay Doğan Kılıç 0000-0002-9484-0777

Emre Ölmez 0000-0003-1686-0251

Orhan Er 0000-0002-4732-9490

Kemal Güllü 0000-0003-2310-2985

Proje Numarası THD-2021-23077
Erken Görünüm Tarihi 6 Temmuz 2023
Yayımlanma Tarihi 18 Eylül 2023
Kabul Tarihi 29 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 5 Sayı: 3

Kaynak Göster

AMA Çavuşoğlu T, Gökhan A, Şirin C, Tomruk C, Kılıç KD, Ölmez E, Er O, Güllü K. Classification of Bovine Cumulus-Oocyte Complexes with Convolutional Neural Networks. Med Records. Eylül 2023;5(3):489-95. doi:10.37990/medr.1292782

 Chief Editors

Assoc. Prof. Zülal Öner
Address: İzmir Bakırçay University, Department of Anatomy, İzmir, Turkey

Assoc. Prof. Deniz Şenol
Address: Düzce University, Department of Anatomy, Düzce, Turkey

E-mail: medrecsjournal@gmail.com

Publisher:
Medical Records Association (Tıbbi Kayıtlar Derneği)
Address: Orhangazi Neighborhood, 440th Street,
Green Life Complex, Block B, Floor 3, No. 69
Düzce, Türkiye
Web: www.tibbikayitlar.org.tr

Publication Support: 

Effect Publishing & Agency
Phone: + 90 (540) 035 44 35
E-mail: info@effectpublishing.com
Address: Akdeniz Neighborhood, Şehit Fethi Bey Street,
No: 66/B, Ground floor, 35210 Konak/İzmir, Türkiye
web: www.effectpublishing.com