SOLUTION FOR STEKLOV BOUNDARY VALUE PROBLEM INVOLVING THE P(X)- LAPLACIAN OPERATORS
Year 2022,
Volume: 8 Issue: 2, 112 - 121, 31.12.2022
Zehra Yücedağ
,
Vahup Murad
Abstract
In this paper, we concerned with Steklov boundary value problem involving - Laplacian operator. By means of the Mountain Pass theorem together with Ambrosetti- Rabinowitz condition, we prove the existence nontrivial weak of solutions in Sobolev spaces with variable exponent under appropriate conditions on f(x,u) .
Supporting Institution
yok
References
- Referans1 Allaoui, M., Continuous spectrum of Steklov nonhomogenous elliptic problem. Opuscula Math. 37(6), 853–866,2005
- Referans1 Allaoui, M., Continuous spectrum of Steklov nonhomogenous elliptic problem. Opuscula Math. 37(6), 853–866,2005
- Referans2 Antontsev, S. N. and Shmarev S. I., A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 6, 515-545,2005
- Referans2 Antontsev, S. N. and Shmarev S. I., A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 6, 515-545,2005
- Referans3 Ayoujil, A., On the superlinear Steklov problem involving the p(x)-Laplacian, EJQTDE., 38, 1–13,2014
- Referans3 Ayoujil, A., On the superlinear Steklov problem involving the p(x)-Laplacian, EJQTDE., 38, 1–13,2014
- Referans4 Ben Ali K., Ghanmi, A. and Kefi, K., On the Steklov problem involving the p(x)-Laplacian with indefinite weight. Opuscula Math. 37(6),779–794, 2017.
- Referans4 Ben Ali K., Ghanmi, A. and Kefi, K., On the Steklov problem involving the p(x)-Laplacian with indefinite weight. Opuscula Math. 37(6),779–794, 2017.
- Referans5 Chen, Y., Levine, S. and Rao, M., Variablee exponent, linear growth functionals in image processing. SIAM J Appl Math. 66,1383–1406, 2006
- Referans5 Chen, Y., Levine, S. and Rao, M., Variablee exponent, linear growth functionals in image processing. SIAM J Appl Math. 66,1383–1406, 2006
- Referans6 Fan, X., Zhang, Q. and Zhao, D., Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302, 306–317, 2015.
- Referans6 Fan, X., Zhang, Q. and Zhao, D., Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302, 306–317, 2015.
- Referans7 Deng, SG., Eigenvalues of thep(x)-Laplacian Steklov problem. J. Math Anal Appl. 339,925–937, 2008
- Referans7 Deng, SG., Eigenvalues of thep(x)-Laplacian Steklov problem. J. Math Anal Appl. 339,925–937, 2008
- Referans8 Ourraoui A., Existence and uniqueness of solutions for Steklov problem with variable exponent, Adv. in the Theory of Nonlinear Anal. and its Appl., 1 (5) (2021), pp.158 166
Referans9 Karim, B., Zerouali, A., and Chakrone O., Existence and multiplicity of a-harmonic solutions for a Steklov problem with variable exponents, Bol. Soc. Paran. Mat., 32(2), 125-136, 2018,
- Referans8 Ourraoui A., Existence and uniqueness of solutions for Steklov problem with variable exponent, Adv. in the Theory of Nonlinear Anal. and its Appl., 1 (5) (2021), pp.158 166
Referans9 Karim, B., Zerouali, A., and Chakrone O., Existence and multiplicity of a-harmonic solutions for a Steklov problem with variable exponents, Bol. Soc. Paran. Mat., 32(2), 125-136, 2018,
- Referans10 Kovăčik, O. and Răkosnik J., On spaces L^{p(x)} and W^{k,p(x)}, Czechoslovak Math. J. 41(116), 592-618, 1991.
- Referans10 Kovăčik, O. and Răkosnik J., On spaces L^{p(x)} and W^{k,p(x)}, Czechoslovak Math. J. 41(116), 592-618, 1991.
- Referans11 Mashiyev, R. A., Cekic, B., Avci, M. and Yucedag, Z., Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition, Complex Variables and Elliptic Equations, 57(5), 579-595, 2012
- Referans11 Mashiyev, R. A., Cekic, B., Avci, M. and Yucedag, Z., Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition, Complex Variables and Elliptic Equations, 57(5), 579-595, 2012
- Referans12 Mihăilescu, M. and Rădulescu, V., A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proceedings of the Royal Society A., 462, 2625- 2641, 2006.
- Referans12 Mihăilescu, M. and Rădulescu, V., A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proceedings of the Royal Society A., 462, 2625- 2641, 2006.
- Referans13 Ruzicka, M., Electro-rheological fluids: modeling and mathematical theory. Lecture notes in mathematics. vol. 1784. Berlin: Springer-Verlag; 2000.
- Referans13 Ruzicka, M., Electro-rheological fluids: modeling and mathematical theory. Lecture notes in mathematics. vol. 1784. Berlin: Springer-Verlag; 2000.
- Referans14 Yucedag, Z., Existence results for steklov problem with nonlinear boundary condition, Middle East Journal of Science., 5(2):146 – 154, 2019
- Referans14 Yucedag, Z., Existence results for steklov problem with nonlinear boundary condition, Middle East Journal of Science., 5(2):146 – 154, 2019
- Referans15 Wei, Z. and Chen, Z., Existence results for the p(x)-Laplacian with nonlinear boundary condition, Applied Math., 2012. doi:10.5402/2012/727398.
- Referans15 Wei, Z. and Chen, Z., Existence results for the p(x)-Laplacian with nonlinear boundary condition, Applied Math., 2012. doi:10.5402/2012/727398.
- Referans16 Willem, M., Minimax Theorems, Birkhauser, Basel, 1996.
- Referans16 Willem, M., Minimax Theorems, Birkhauser, Basel, 1996.
- Referans17 Zerouali A., Chakrone O. and Anano A., Existence and multiplicity solutions results for elliptic problem with nonlinear conditions and variable exponents, Bol. Soc. Paran. Mat., v. 2 (33), (2015), pp. 121-131
- Referans17 Zerouali A., Chakrone O. and Anano A., Existence and multiplicity solutions results for elliptic problem with nonlinear conditions and variable exponents, Bol. Soc. Paran. Mat., v. 2 (33), (2015), pp. 121-131
- Referans18 Zhikov, VV., Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 29, 33–66, 1987.
- Referans18 Zhikov, VV., Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 29, 33–66, 1987.
Year 2022,
Volume: 8 Issue: 2, 112 - 121, 31.12.2022
Zehra Yücedağ
,
Vahup Murad
References
- Referans1 Allaoui, M., Continuous spectrum of Steklov nonhomogenous elliptic problem. Opuscula Math. 37(6), 853–866,2005
- Referans1 Allaoui, M., Continuous spectrum of Steklov nonhomogenous elliptic problem. Opuscula Math. 37(6), 853–866,2005
- Referans2 Antontsev, S. N. and Shmarev S. I., A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 6, 515-545,2005
- Referans2 Antontsev, S. N. and Shmarev S. I., A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 6, 515-545,2005
- Referans3 Ayoujil, A., On the superlinear Steklov problem involving the p(x)-Laplacian, EJQTDE., 38, 1–13,2014
- Referans3 Ayoujil, A., On the superlinear Steklov problem involving the p(x)-Laplacian, EJQTDE., 38, 1–13,2014
- Referans4 Ben Ali K., Ghanmi, A. and Kefi, K., On the Steklov problem involving the p(x)-Laplacian with indefinite weight. Opuscula Math. 37(6),779–794, 2017.
- Referans4 Ben Ali K., Ghanmi, A. and Kefi, K., On the Steklov problem involving the p(x)-Laplacian with indefinite weight. Opuscula Math. 37(6),779–794, 2017.
- Referans5 Chen, Y., Levine, S. and Rao, M., Variablee exponent, linear growth functionals in image processing. SIAM J Appl Math. 66,1383–1406, 2006
- Referans5 Chen, Y., Levine, S. and Rao, M., Variablee exponent, linear growth functionals in image processing. SIAM J Appl Math. 66,1383–1406, 2006
- Referans6 Fan, X., Zhang, Q. and Zhao, D., Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302, 306–317, 2015.
- Referans6 Fan, X., Zhang, Q. and Zhao, D., Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302, 306–317, 2015.
- Referans7 Deng, SG., Eigenvalues of thep(x)-Laplacian Steklov problem. J. Math Anal Appl. 339,925–937, 2008
- Referans7 Deng, SG., Eigenvalues of thep(x)-Laplacian Steklov problem. J. Math Anal Appl. 339,925–937, 2008
- Referans8 Ourraoui A., Existence and uniqueness of solutions for Steklov problem with variable exponent, Adv. in the Theory of Nonlinear Anal. and its Appl., 1 (5) (2021), pp.158 166
Referans9 Karim, B., Zerouali, A., and Chakrone O., Existence and multiplicity of a-harmonic solutions for a Steklov problem with variable exponents, Bol. Soc. Paran. Mat., 32(2), 125-136, 2018,
- Referans8 Ourraoui A., Existence and uniqueness of solutions for Steklov problem with variable exponent, Adv. in the Theory of Nonlinear Anal. and its Appl., 1 (5) (2021), pp.158 166
Referans9 Karim, B., Zerouali, A., and Chakrone O., Existence and multiplicity of a-harmonic solutions for a Steklov problem with variable exponents, Bol. Soc. Paran. Mat., 32(2), 125-136, 2018,
- Referans10 Kovăčik, O. and Răkosnik J., On spaces L^{p(x)} and W^{k,p(x)}, Czechoslovak Math. J. 41(116), 592-618, 1991.
- Referans10 Kovăčik, O. and Răkosnik J., On spaces L^{p(x)} and W^{k,p(x)}, Czechoslovak Math. J. 41(116), 592-618, 1991.
- Referans11 Mashiyev, R. A., Cekic, B., Avci, M. and Yucedag, Z., Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition, Complex Variables and Elliptic Equations, 57(5), 579-595, 2012
- Referans11 Mashiyev, R. A., Cekic, B., Avci, M. and Yucedag, Z., Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition, Complex Variables and Elliptic Equations, 57(5), 579-595, 2012
- Referans12 Mihăilescu, M. and Rădulescu, V., A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proceedings of the Royal Society A., 462, 2625- 2641, 2006.
- Referans12 Mihăilescu, M. and Rădulescu, V., A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proceedings of the Royal Society A., 462, 2625- 2641, 2006.
- Referans13 Ruzicka, M., Electro-rheological fluids: modeling and mathematical theory. Lecture notes in mathematics. vol. 1784. Berlin: Springer-Verlag; 2000.
- Referans13 Ruzicka, M., Electro-rheological fluids: modeling and mathematical theory. Lecture notes in mathematics. vol. 1784. Berlin: Springer-Verlag; 2000.
- Referans14 Yucedag, Z., Existence results for steklov problem with nonlinear boundary condition, Middle East Journal of Science., 5(2):146 – 154, 2019
- Referans14 Yucedag, Z., Existence results for steklov problem with nonlinear boundary condition, Middle East Journal of Science., 5(2):146 – 154, 2019
- Referans15 Wei, Z. and Chen, Z., Existence results for the p(x)-Laplacian with nonlinear boundary condition, Applied Math., 2012. doi:10.5402/2012/727398.
- Referans15 Wei, Z. and Chen, Z., Existence results for the p(x)-Laplacian with nonlinear boundary condition, Applied Math., 2012. doi:10.5402/2012/727398.
- Referans16 Willem, M., Minimax Theorems, Birkhauser, Basel, 1996.
- Referans16 Willem, M., Minimax Theorems, Birkhauser, Basel, 1996.
- Referans17 Zerouali A., Chakrone O. and Anano A., Existence and multiplicity solutions results for elliptic problem with nonlinear conditions and variable exponents, Bol. Soc. Paran. Mat., v. 2 (33), (2015), pp. 121-131
- Referans17 Zerouali A., Chakrone O. and Anano A., Existence and multiplicity solutions results for elliptic problem with nonlinear conditions and variable exponents, Bol. Soc. Paran. Mat., v. 2 (33), (2015), pp. 121-131
- Referans18 Zhikov, VV., Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 29, 33–66, 1987.
- Referans18 Zhikov, VV., Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 29, 33–66, 1987.