Research Article
BibTex RIS Cite

Year 2019, Volume: 7 Issue: 2, 157 - 165, 25.12.2019

Abstract

References

  • [1] Vladimirov V.S.,” Matematicheskie zadachi odnoskorostnoi toerii perenosa chastis”, Trudy MİAN,Т.61,(1961),130-158.
  • [2] Volterra V., Teoriya funksionalov,integrelnyh i integro- differensiyalnyh uravneniy.Moskva, Nauka, 1982..
  • [3] Tyn Myint-U, Lokenath, Partial Differential Equations for Scientists and Engineers, Prentice Hall, 1987.
  • [4] Tihonov A.I. and Samarskiy А.А., Uravneniye matematicheskoy fiziki. Мoskva, Nauka,1972.
  • [5] Sharma J.N., Kehar Singh, Partial Differential Equations For Engineers and Scientists, Alpha Science İnternational Ltd. 2000, UK.
  • [6] Aramanovich İ.G. and Levin V.İ., Uravneniye matematicheskoy fiziki. İzdatelstvo Nauka, 1969.
  • [7] Denemeyer R. Introduction to: Partial Differential Equations and Boundary Value Problems, McGraw-Hill Book Company, New York, 1968.
  • [8] Snedon I.N., Elements of Partial Differential Equations, dover Publications, INC.,New York ,2006.
  • [9] Chaglıyan M., Chelebi O., Kysmi Diferensiyel Denklemler, Uludag Üniversitesi Guchlendirme Vakfı,Yayın No:196,VİPASH A.SH.,Yayın No:72,2002.
  • [10] Koca K., Kysmi Diferensiyel Denklemler, Gunduz Egitim ve Yayıncılık, Ankara, 2001.
  • [11] Anar E., Kısmi Diferensiyel Denklemler, Palme Yayıncılık,Ankara,2005.
  • [12] Kerimbekov A., Abdyldaeva E., “On the Solvability of a Nonlinear Tracking Problem Under Boundary Control for the Elastic Oscillations Described by Fredholm Integro-Differential Equations”, System Modeling and Optimization Dergisi. 27th IFIP TC 7 Conference, CSMO 2015. Sophia Antipolis, France, June 29–July 3, 2015. Revised Selected Papers. Sprınger. 2017. 312-322 р

Generalized solution of boundary value problem with an inhomogeneous boundary condition

Year 2019, Volume: 7 Issue: 2, 157 - 165, 25.12.2019

Abstract




In this problem, we study the solution to boundary value problem for a
controlled oscillation process, described by Fredholm integro-differential
equation with an inhomogeneous boundary condition. An algorithm is developed
for constructing a generalized solution of boundary value problem. It is
proved that a weak generalized solution is an element of Hilbert space.
Approximate solutions of the boundary value problem are determined and their
convergence is proved.


 



References

  • [1] Vladimirov V.S.,” Matematicheskie zadachi odnoskorostnoi toerii perenosa chastis”, Trudy MİAN,Т.61,(1961),130-158.
  • [2] Volterra V., Teoriya funksionalov,integrelnyh i integro- differensiyalnyh uravneniy.Moskva, Nauka, 1982..
  • [3] Tyn Myint-U, Lokenath, Partial Differential Equations for Scientists and Engineers, Prentice Hall, 1987.
  • [4] Tihonov A.I. and Samarskiy А.А., Uravneniye matematicheskoy fiziki. Мoskva, Nauka,1972.
  • [5] Sharma J.N., Kehar Singh, Partial Differential Equations For Engineers and Scientists, Alpha Science İnternational Ltd. 2000, UK.
  • [6] Aramanovich İ.G. and Levin V.İ., Uravneniye matematicheskoy fiziki. İzdatelstvo Nauka, 1969.
  • [7] Denemeyer R. Introduction to: Partial Differential Equations and Boundary Value Problems, McGraw-Hill Book Company, New York, 1968.
  • [8] Snedon I.N., Elements of Partial Differential Equations, dover Publications, INC.,New York ,2006.
  • [9] Chaglıyan M., Chelebi O., Kysmi Diferensiyel Denklemler, Uludag Üniversitesi Guchlendirme Vakfı,Yayın No:196,VİPASH A.SH.,Yayın No:72,2002.
  • [10] Koca K., Kysmi Diferensiyel Denklemler, Gunduz Egitim ve Yayıncılık, Ankara, 2001.
  • [11] Anar E., Kısmi Diferensiyel Denklemler, Palme Yayıncılık,Ankara,2005.
  • [12] Kerimbekov A., Abdyldaeva E., “On the Solvability of a Nonlinear Tracking Problem Under Boundary Control for the Elastic Oscillations Described by Fredholm Integro-Differential Equations”, System Modeling and Optimization Dergisi. 27th IFIP TC 7 Conference, CSMO 2015. Sophia Antipolis, France, June 29–July 3, 2015. Revised Selected Papers. Sprınger. 2017. 312-322 р
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Elmira Abdyldaeva 0000-0002-3874-9055

Gulbarchyn Taalaibek Kyzy This is me 0000-0002-3874-9055

Bermet Anarkulova This is me 0000-0002-3874-9055

Publication Date December 25, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA Abdyldaeva, E., Taalaibek Kyzy, G., & Anarkulova, B. (2019). Generalized solution of boundary value problem with an inhomogeneous boundary condition. MANAS Journal of Engineering, 7(2), 157-165. https://izlik.org/JA75SW98TE
AMA 1.Abdyldaeva E, Taalaibek Kyzy G, Anarkulova B. Generalized solution of boundary value problem with an inhomogeneous boundary condition. MJEN. 2019;7(2):157-165. https://izlik.org/JA75SW98TE
Chicago Abdyldaeva, Elmira, Gulbarchyn Taalaibek Kyzy, and Bermet Anarkulova. 2019. “Generalized Solution of Boundary Value Problem With an Inhomogeneous Boundary Condition”. MANAS Journal of Engineering 7 (2): 157-65. https://izlik.org/JA75SW98TE.
EndNote Abdyldaeva E, Taalaibek Kyzy G, Anarkulova B (December 1, 2019) Generalized solution of boundary value problem with an inhomogeneous boundary condition. MANAS Journal of Engineering 7 2 157–165.
IEEE [1]E. Abdyldaeva, G. Taalaibek Kyzy, and B. Anarkulova, “Generalized solution of boundary value problem with an inhomogeneous boundary condition”, MJEN, vol. 7, no. 2, pp. 157–165, Dec. 2019, [Online]. Available: https://izlik.org/JA75SW98TE
ISNAD Abdyldaeva, Elmira - Taalaibek Kyzy, Gulbarchyn - Anarkulova, Bermet. “Generalized Solution of Boundary Value Problem With an Inhomogeneous Boundary Condition”. MANAS Journal of Engineering 7/2 (December 1, 2019): 157-165. https://izlik.org/JA75SW98TE.
JAMA 1.Abdyldaeva E, Taalaibek Kyzy G, Anarkulova B. Generalized solution of boundary value problem with an inhomogeneous boundary condition. MJEN. 2019;7:157–165.
MLA Abdyldaeva, Elmira, et al. “Generalized Solution of Boundary Value Problem With an Inhomogeneous Boundary Condition”. MANAS Journal of Engineering, vol. 7, no. 2, Dec. 2019, pp. 157-65, https://izlik.org/JA75SW98TE.
Vancouver 1.Abdyldaeva E, Taalaibek Kyzy G, Anarkulova B. Generalized solution of boundary value problem with an inhomogeneous boundary condition. MJEN [Internet]. 2019 Dec. 1;7(2):157-65. Available from: https://izlik.org/JA75SW98TE

Manas Journal of Engineering 

16155